满分5 > 高中数学试题 >

已知数列{an}的前n项为和Sn,点在直线上.数列{bn}满足bn+2-2bn+...

已知数列{an}的前n项为和Sn,点manfen5.com 满分网在直线manfen5.com 满分网上.数列{bn}满足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9项和为153.
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设manfen5.com 满分网,数列{cn}的前n和为Tn,求使不等式manfen5.com 满分网对一切n∈N*都成立的最大正整数k的值.
(1)根据点在直线上可得到整理可得到.,再由n≥2时,an=Sn-Sn-1可得到an的表达式,再对n=1时进行验证即可得到数列{an}的通项公式;根据bn+2-2bn+1+bn=0可转化为bn+2-bn+1=bn+1-bn得到{bn}为等差数列,即可求出{bn}的通项公式. (2)将(1)中的{an}、{bn}的通项公式代入到{cn}中然后进行裂项,可得到前n项和,进而可确定Tn的表达式,然后作差可验证Tn单调递增,求出Tn的最小值,然后令最小值大于求出k即可. 【解析】 (Ⅰ)由题意,得. 故当. 注意到n=1时,a1=S1=6,而当n=1,n+5=6, 所以,an=n+5(n∈N*). 又bn+2-2bn+1+bn=0,即bn+2-bn+1=bn+1-bn(n∈N*), 所以{bn}为等差数列,于是. 而, 因此,bn=b3+3(n-3)=3n+2,即bn=3n+2(n∈N*). (Ⅱ) =. 所以, =. 由于, 因此Tn单调递增,故. 令.
复制答案
考点分析:
相关试题推荐
设a∈R,函数f(x)=-(x-1)2+2(a-1)ln(x+1).
(Ⅰ)若函数f(x)在点(0,f(0))处的切线方程为y=4x-1,求a的值;
(Ⅱ)当a<1时,讨论函数f(x)的单调性.
查看答案
三棱锥P-ABC中,PC、AC、BC两两垂直,BC=PC=1,AC=2,E、F、G分别是AB、AC、AP的中点.
(Ⅰ)证明平面GFE∥平面PCB;
(Ⅱ)求二面角B-AP-C的大小;
(Ⅲ)求直线PF与平面PAB所成角的大小.

manfen5.com 满分网 查看答案
已知某同学上学途中必须经过三个交通岗,且在每一个交通岗遇到红灯的概率均为manfen5.com 满分网,假设他在3个交通岗遇到红灯的事件是相互独立的,用随机变量ξ表示该同学遇到红灯的次数.
(1)求该同学在第一个交通岗遇到红灯,其它交通岗未遇到红灯的概率;
(2)若ξ≥2,则该同学就迟到,求该同学不迟到的概率;
(3)求随机变量ξ的分布列和数学期望.
查看答案
在△ABC中,a,b,c分别为角A,B,C的对边.已知manfen5.com 满分网=(cosmanfen5.com 满分网,sinmanfen5.com 满分网),manfen5.com 满分网=(cosmanfen5.com 满分网,-sinmanfen5.com 满分网),且manfen5.com 满分网
(1)求角C;
(2)若c=manfen5.com 满分网,△ABC的面积S=manfen5.com 满分网,求a+b的值.
查看答案
给出下列四个命题:
①命题“∃x∈R,x2+1>3x”的否定形式是“∀x∈R,x2+1>3x”;
②在空间中,m、n是两条不重合的直线,α、β是两个不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
③将函数y=cos2x的图象向右平移manfen5.com 满分网个单位,得到函数manfen5.com 满分网的图象;
④命题“∃x∈R,x2+1>3x”的否命题是“∀x∈R,x2+1>3x”.
其中正确命题的序号是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.