满分5 > 高中数学试题 >

已知数列{an}的前n项和Sn=12n-n2,求数列{|an|}的前n项和Tn....

已知数列{an}的前n项和Sn=12n-n2,求数列{|an|}的前n项和Tn
由Sn=12n-n2知Sn是关于n的无常数项的二次函数(n∈N*),可知{an}为等差数列,求出an,然后再判断哪些项为正,哪些项为负,然后求解Tn. 【解析】 当n=1时,a1=S1=12-12=11; 当n≥2时,an=Sn-Sn-1=12n-n2-[12(n-1)-(n-1)2]=13-2n. ∵n=1时适合上式, ∴{an}的通项公式为an=13-2n. 由an=13-2n≥0,得n≤, 即当 1≤n≤6(n∈N*)时,an>0;当n≥7时,an<0. (1)当 1≤n≤6(n∈N*)时, Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=12n-n2. (2)当n≥7(n∈N*)时, Tn=|a1|+|a2|+…+|an|=(a1+a2+…+a6)-(a7+a8+…+an)=-(a1+a2+…+an)+2(a1+…+a6) =-Sn+2S6=n2-12n+72. ∴Tn=.
复制答案
考点分析:
相关试题推荐
试求函数manfen5.com 满分网的定义域和值域.
查看答案
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,满足f=af(b)+bf(a).又已知manfen5.com 满分网,考查下列结论:①f(0)=0;②f(-1)=-1;③a2是a1,a3的等比中项;④b2是b1,b3的等差中项.其中正确的是    .(填上所有正确命题的序号) 查看答案
如图是小明同学用火柴搭的1条、2条、3条“金鱼”…搭1条“金鱼”要用8根火柴,则搭100条“金鱼”需要火柴    根.manfen5.com 满分网 查看答案
数列manfen5.com 满分网的前n项和为    查看答案
化简manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.