满分5 > 高中数学试题 >

设集合M={x|x2-x<0},N={x||x|<2},则( ) A.M∩N=Φ...

设集合M={x|x2-x<0},N={x||x|<2},则( )
A.M∩N=Φ
B.M∩N=M
C.M∪N=M
D.M∪N=R
M、N分别是二次不等式和绝对值不等式的解集,分别解出再求交集合并集. 【解析】 集合M={x|x2-x<0}={x|0<x<1},N={x||x|<2}={x|-2<x<2},∴M∩N=M, 故选B.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=px2+qx,其中p>0,p+q>1,对于数列{an},设它的前n项和为Sn,且满足Sn=f(n)(n∈N*).
(1)求数列{an}的通项公式,并证明an+1>an>1(n∈N*);
(2)求证:点manfen5.com 满分网在同一直线l1上;
(3)若过点N1(1,a1),N2(2,a2)作直线l2,设l2与l1的夹角为θ,求tanθ的最大值.
查看答案
已知双曲线的两条渐近线方程为直线manfen5.com 满分网manfen5.com 满分网,焦点在y轴上,实轴长为manfen5.com 满分网,O为坐标原点.
(1)求双曲线方程;
(2)设P1,P2分别是直线l1和l2上的点,点M在双曲线上,且manfen5.com 满分网,求三角形P1OP2的面积.
查看答案
设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求PF1•PF2的最大值和最小值;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
查看答案
已知manfen5.com 满分网,O是原点,点P(x,y)的坐标满足manfen5.com 满分网
(1)求manfen5.com 满分网的最大值.;(2)求manfen5.com 满分网的取值范围.
查看答案
在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y-1)2=4 和圆C2:(x-4)2+(y-5)2=4
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2manfen5.com 满分网,求直线l的方程
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.