满分5 > 高中数学试题 >

已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-...

已知三次函数f(x)=x3+ax2+bx+c在x=1和x=-1时取极值,且f(-2)=-4.
(I)求函数y=f(x)的表达式;
(II)求函数y=f(x)的单调区间和极值;
(Ⅲ)若函数g(x)=f(x-m)+4m(m>0)在区间[m-3,n]上的值域为[-4,16],试求m、n应满足的条件.
(I)由题意先求f(x)的导函数,利用导数的几何含义和切点的实质及g(x)为奇函数建立a,b,c的方程求解即可; (Ⅱ)有(1)可知函数f(x)的解析式,先对函数f(x)求导,再利用极值和单调性的概念加以求解即可. (Ⅲ)根据(1)函数的单调性,由于x∈[m-3,n]恒成立求出函数的最大值,列出不等式,求出mn的范围即可. 【解析】 (I)f′(x)=3x2+2ax+b,由题意得,1,-1是3x2+2ax+b=0的两个根, 解得,a=0,b=-3.(2分)再由f(-2)=-4可得c=-2.∴f(x)=x3-3x-2.(4分) (Ⅱ)f′(x)=3x2-3=3(x+1)(x-1),当x<-1时,f'(x)>0;当-1<x<1时,f'(x)<0;落当x>-1时,f'(x)>0.(6分)∴函数f(x)在区间(-∞,-1]上是增函数;在区间[-1,1]上是减函数;在区间[1,+∞)上是增函数.(7分) 函数f(x)的极大值是f(-1)=0,极小值是f(1)=-4.(9分) (Ⅲ)函数g(x)的图象是由f(x)的图象向右平移m个单位,向上平移4m个单位得到, 所以,函数f(x)在区间[-3,n-m]上的值域为[-4-4m,16-4m](m>0).(10分) f(-3)=-20,∴-4-4m=-20,即m=4. 于是,函数f(x)在区间[-3,n-4]上的值域为[-20,0],(12分) 令f(x)=0得x=-1或x=2. 由f(x)的单调性知,-1≤n-4≤2,即3≤n≤6. 综上所述,m应满足的条件是:m=4,且3≤n≤6(14分)
复制答案
考点分析:
相关试题推荐
如图,在多面体ABCDEF中,四边形ABCD是正方形,FA⊥平面ABCD,EF∥BC,FA=2,AD=3,∠ADE=45°,点G是FA的中点.
(1)求证:EG⊥平面CDE;
(2)在棱BC是否存在点M,使GM∥平面CDE,若存在,找出点M;若不存在,说明理由.

manfen5.com 满分网 查看答案
有编号为0,1,2,3,4,5,6,7,的8个零件,测量得其长度(单位:cm)如下
编号1234567
长度98100101999810099104
其中长度在[a,b](a、b都是整数)内的零件为正品,其余为次品,且从这8个零件中任抽取一个得正品的概率为0.625.
(1)求a、b的值;
(2)在正品中随机抽一个零件,长度记为x,在次品中随机抽一个零件,长度记为y,求|x-y|≤2的概率.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,向量manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求sinA的值;  (Ⅱ)若b=2,△ABC的面积为3,求a.
查看答案
给出下列四个命题
①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;
②若0<a<1,则f(x)=x2+ax-3只有一个零点;
③若lga+lgb=lg(a+b),则a+b的最小值为4;
④对于任意实数x,有f(-x)=f(x),且当x>0时,f'(x)>0,则当x<0时,f'(x)<0.
其中正确的命题有    (填所有正确的序号) 查看答案
manfen5.com 满分网如图为函数f(x)=ax3+bx2+cx+d的图象,f′(x)为函数f(x)的导函数,则不等式x•f′(x)<0的解集为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.