满分5 > 高中数学试题 >

某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格.销售量可以增加...

某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格.销售量可以增加,且每星期多卖出的商品件数与商品单价的降低销x(单位:元,0≤x≤30)的平方成正比.已知商品单价降低2元时,一星期多卖出24件.
(Ⅰ)将一个星期的商品销售利润表示成x的函数;
(Ⅱ)如何定价才能使一个星期的商品销售利润最大?
(Ⅰ)先设商品降价x元,写出多卖的商品数,则可计算出商品在一个星期的获利数,再依题意:“商品单价降低2元时,一星期多卖出24件”求出比例系数即可得一个星期的商品销售利润表示成x的函数; (Ⅱ)根据(Ⅰ)中得到的函数,利用导数研究其极值,从而救是f(x)达到极大值.从而得出所以定价为多少元时,能使一个星期的商品销售利润最大. 【解析】 (Ⅰ)设商品降价x元,则多卖的商品数为kx2,若记商品在一个星期的获利为f(x), 则依题意有f(x)=(30-x-9)(432+kx2)=(21-x)(432+kx2), 又由已知条件,24=k•22,于是有k=6, 所以f(x)=-6x3+126x2-432x+9072,x∈[0,30]. (Ⅱ)根据(Ⅰ),我们有f'(x)=-18x2+252x-432=-18(x-2)(x-12). ∴当x=12时,f(x)达到极大值. 因为f(0)=9072,f(12)=11264, 所以定价为30-12=18元能使一个星期的商品销售利润最大.
复制答案
考点分析:
相关试题推荐
如图,在底面是直角梯形的四棱锥P-ABCD中,∠DAB=90°,PA⊥平面 ABCD,PA=AB=BC=1,AD=2,M为PD中点.
( I ) 求证:MC∥平面PAB;
(Ⅱ)在棱PD上找一点Q,使二面角Q-AC-D的正切值为manfen5.com 满分网

manfen5.com 满分网 查看答案
已知正项数列{an}的前n项和为Sn,且4an-2Sn=1,数列{bn}满足bn=2manfen5.com 满分网,n∈N*
(1)求数列{an}的通项an与{bn}的前n项和Tn
(2)设数列{manfen5.com 满分网}的前n项和为Un,求证:0<Un≤4.
查看答案
对于函数f(x)=manfen5.com 满分网|x|3-manfen5.com 满分网x2+(3-a)|x|+b.
(1)若f(2)=7,则f(-2)=   
(2)若f(x)有六个不同的单调区间,则a的取值范围是    查看答案
定义在R上的函数f(x),对任意实数x∈R,都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2成立,且f(1)=2,记an=f(n)(n∈N*),则a2008=    查看答案
已知函数f(x)=manfen5.com 满分网在x=1处连续,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.