满分5 > 高中数学试题 >

已知集合M={a,b,c},N={-1,0,1},从M到N的映射满足f(a)+f...

已知集合M={a,b,c},N={-1,0,1},从M到N的映射满足f(a)+f(b)+f(c)=0,那么映射f的个数为( )
A.2
B.4
C.5
D.7
首先求满足f(a)+f(b)+f(c)=0的映射f,可分为2种情况,情况1当函数值都为0的时候,情况2函数值有一个为0一个为-1,一个为1的情况.分别求出2种情况的个数相加即可得到答案. 【解析】 因为:f(a)∈N,f(b)∈N,f(c)∈N,且f(a)+f(b)+f(c)=0, 所以分为2种情况:0+0+0=0 或者 0+1+(-1)=0. 当f(a)=f(b)=f(c)=0时,只有一个映射; 当f(a)、f(b)、f(c)中恰有一个为0,而另两个分别为1,-1时,有C31•A22=6个映射.因此所求的映射的个数为1+6=7. 故选D.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网,则A∩CRB=( )
A.{2}
B.{-1}
C.{x|x≤2}
D.Φ
查看答案
已知数列{an}中,a1=1,且满足递推关系manfen5.com 满分网
(1)当m=1时,求数列{an}的通项an
(2)当n∈N*时,数列{an}满足不等式an+1≥an恒成立,求m的取值范围;
(3)在-3≤m<1时,证明manfen5.com 满分网
查看答案
设函数f(x)=31-x-1,函数g(x)=ax2+5x-2a.
(1)求f(x)在[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求a的取值范围.
查看答案
如图,一条笔直的小路CA通向河边的一座凉亭A,小路与河边成α角(tanα=4),在凉亭北偏东45°方向4manfen5.com 满分网cm处的B处有一颗千年古树.现准备从小路的某点P处开挖新修一条直路PD经过古树通向河边,两条路与河边围成的区域种上草坪.当开挖点P选在距凉亭多远处能使草坪占地面积最小?

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四边形ACFE是矩形,AE=a,点M在线段EF上..
(Ⅰ)求证:BC⊥平面ACFE;.
(Ⅱ)求二面角B-EF-D的平面角的余弦值.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.