满分5 > 高中数学试题 >

已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列...

已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设manfen5.com 满分网,Tn是数列{bn}的前n项和,求使得manfen5.com 满分网对所有n∈N*都成立的最小正整数m;
(Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),根据导函数求得f(x)的表达式,再根据点(n,Sn)(n∈N*)均在函数 y=f(x)的图象上,求出an的递推关系式, (Ⅱ)把(1)题中an的递推关系式代入bn,根据裂项相消法求得Tn,最后解得使得对所有n∈N*都成立的最小正整数m. 【解析】 (Ⅰ)设这二次函数f(x)=ax2+bx(a≠0),则f′(x)=2ax+b,由于f′(x)=6x-2,得 a=3,b=-2,所以f(x)=3x2-2x. 又因为点(n,Sn)(n∈N*)均在函数y=f(x)的图象上, 所以Sn=3n2-2n. 当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5. 当n=1时,a1=S1=3×12-2=6×1-5, 所以,an=6n-5(n∈N*) (Ⅱ)由(Ⅰ)得知==, 故Tn===(1-). 因此,要使(1-)<(n∈N*)成立的m,必须且仅须满足≤,即m≥10, 所以满足要求的最小正整数m为10.
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网,其中向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,x∈R.
(Ⅰ)求函数f(x)的最大值和最小正周期;
(Ⅱ)将函数f(x)的图象按向量manfen5.com 满分网平移,使平移后得到的图象关于坐标原点成中心对称,求长度最小的manfen5.com 满分网
查看答案
已知定义域为R的函数manfen5.com 满分网是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
查看答案
已知函数f(x)=ax3+bx2+cx在点x处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:
(Ⅰ)x的值;
(Ⅱ)a,b,c的值.

manfen5.com 满分网 查看答案
甲、乙、丙3人投篮,投进的概率分别是manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网.现3人各投篮1次,求:
(Ⅰ)3人都投进的概率;
(Ⅱ)3人中恰有2人投进的概率.
查看答案
已知α为锐角,且manfen5.com 满分网
(1)求manfen5.com 满分网的值;
(2)求manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.