满分5 > 高中数学试题 >

设F1、F2分别是椭圆的左、右焦点. (Ⅰ)若P是该椭圆上的一个动点,求PF1•...

设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求PF1•PF2的最大值和最小值;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(Ⅰ)根据题意,求出a,b,c的值,然后设P的坐标,根据PF1•PF2的表达式,按照一元二次函数求最值方法求解. (Ⅱ)设出直线方程,与已知椭圆联立方程组,运用设而不求韦达定理求出根的关系,求出k的取值范围. 【解析】 (Ⅰ)由题意易知 所以, 设P(x,y), 则= 因为x∈[-2,2], 故当x=0,即点P为椭圆短轴端点时, 有最小值-2 当x=±2,即点P为椭圆长轴端点时, 有最大值1 (Ⅱ)显然直线x=0不满足题设条件, 可设直线l:y=kx+2,A(x1,y1),B(x2,y2), 联立,消去y,整理得: ∴ 由得:或, 又 ∴ 又y1y2=(kx1+2)(kx2+2) =k2x1x2+2k(x1+x2)+4 == ∵, 即k2<4∴-2<k<2 故由①、②得: 或.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x3+ax2+bx+c在x=-manfen5.com 满分网与x=1时都取得极值
(1)求a、b的值与函数f(x)的单调区间.
(2)若对x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.
查看答案
设集合P={b,1},Q={c,1,2},P⊆Q,若 b,c∈{2,3,4,5,6,7,8,9},
(1)求 b=c 的概率;
(2)求方程x2+bx+c=0有实根的概率.
查看答案
给定两个命题,命题p:对任意实数x都有ax2+ax+1>0恒成立,命题q:关于x的方程x2-x+a=0有实数根,如果p∨q为真命题,p∧q为假命题,求实数a的取值范围.
查看答案
已知数列{an}中,manfen5.com 满分网(n为正整数),依次计算a2,a3,a4后,归纳、猜想出an=    查看答案
已知双曲线kx2-y2=1的一条渐近线与直线2x+y+1=0垂直,那么双曲线的离心率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.