满分5 > 高中数学试题 >

如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、D...

manfen5.com 满分网如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(1)求证:EF∥平面ABC1D1
(2)求证:EF⊥B1C;
(3)求三棱锥manfen5.com 满分网的体积.
(1)欲证EF∥平面ABC1D1,根据直线与平面平行的判定定理可知只需证EF与平面ABC1D1内一直线平行,连接BD1,在△DD1B中,E、F分别为D1D,DB的中点,根据中位线定理可知EF∥D1B,满足定理所需条件; (2)先根据线面垂直的判定定理证出B1C⊥平面ABC1D1,而BD1⊂平面ABC1D1,根据线面垂直的性质可知B1C⊥BD1,而EF∥BD1,根据平行的性质可得结论; (3)可先证CF⊥平面EFB1,根据勾股定理可知∠EFB1=90°,根据等体积法可知=V C-B1EF,即可求出所求. 【解析】 (1)证明:连接BD1,如图,在△DD1B中,E、F分别为D1D,DB的中点,则 平面ABC1D1. (2) (3)∵CF⊥平面BDD1B1,∴CF⊥平面EFB1且, ∵,, ∴EF2+B1F2=B1E2即∠EFB1=90°, ∴ ==
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)当manfen5.com 满分网时,若manfen5.com 满分网,求函数f(x)的值;
(2)当manfen5.com 满分网时,求函数manfen5.com 满分网的值域;
(3)把函数y=f(x)的图象按向量manfen5.com 满分网平移得到函数g(x)的图象,若函数g(x)是偶函数,写出manfen5.com 满分网最小的向量manfen5.com 满分网的坐标.
查看答案
设Sn是等差数列{an}的前n项和,若以点O(0,0)、A(l,Sl)、B(m,Sm)、C(p,Sp)为顶点的四边形(其中l<m<n),AB∥OC,则之间的等量关系式经化简后为    查看答案
在计算机的算法语言中有一种函数[x]叫做取整函数(也称高斯函数),它表示x的整数部分,即[x]是不超过x的最大整数.例如:[2]=2,[3.1]=3,[-2.6]=-3.设函数manfen5.com 满分网,则函数y=[f(x)]+[f(-x)]的值域为     查看答案
在约束条件manfen5.com 满分网下,当3≤s≤5时,目标函数z=3x+2y的最大值的变化范围是    查看答案
在△ABC中,若AB⊥AC,AC=b,BC=a,则△ABC的外接圆半径manfen5.com 满分网,将此结论拓展到空间,可得出的正确结论是:在四面体S-ABC中,若SA、SB、SC两两垂直,SA=a,SB=b,SC=c,则四面体S-ABC的外接球半径R=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.