满分5 > 高中数学试题 >

已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[...

已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在实数m,使得方程manfen5.com 满分网在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出m的取值范围;若不存在,说明理由.
(1)根据二次函数小于0的解集,设出解析式,利用单调性求得最大值,解出待定系数. (2)将方程等价转化h(x)=0,利用h(x)的导数判断其单调性,利用单调性判断h(x)=0的根的情况. 【解析】 (1)∵f(x)是二次函数,且f(x)<0的解集是(0,5),∴可设f(x)=ax(x-5)(a>0). ∴f(x)在区间[-1,4]上的最大值是f(-1)=6a. 由已知得6a=12,∴a=2,∴f(x)=2x(x-5)=2x2-10x(x∈R). (2)方程等价于方程 2x3-10x2+37=0. 设h(x)=2x3-10x2+37,则h'(x)=6x2-20x=2x(3x-10). 在区间时,h'(x)<0,h(x)是减函数; 在区间(-∞,0),或上,h'(x)>0,h(x)是增函数,故h(0)是极大值,h()是极小值. ∵, ∴方程h(x)=0在区间内分别有惟一实数根,故函数h(x)在(3,4)内有2个零点. 而在区间(0,3),(4,+∞)内没有零点,在(-∞,0)上有唯一的零点. 画出函数h(x)的单调性和零点情况的简图,如图所示. 所以存在惟一的自然数m=3,使得方程在区间(m,m+1)内有且只有两个不同的实数根.
复制答案
考点分析:
相关试题推荐
给出两个命题:命题p:f-1(x)是f(x)=1-3x的反函数且|f-1(a)|<2,命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅,求实数a的取值范围,使得命题“p且q”为真命题.
查看答案
已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.
查看答案
1999年10月12日“世界60亿人口日”提出了“人类对生育的选择决定世界未来”的主题,控制人口急剧增长的紧迫任务摆在我们面前.
(1)世界人口在过去40年内翻了一番,问每年人口平均增长率是多少?
(2)我国人口在1998年底达到12.48亿,若将人口平均增长率控制在1%以内,我国人口在2003年底至多有多少亿?
以下数据供计算时使用:
数N1.0101.0151.0171.3102.000
对数lgN0.004 30.006 30.00750.117 30.301 0
数N3.0005.0001.2481.311
对数lgN0.477 10.699 00.096 20.117 7

查看答案
f(x)是定义在R上的奇函数且满足f(x+2)=f(x),又当x∈(0,1)时f(x)=2x-1.
(1)求f(x)在x∈(2,3)时的解析式;
(2)求manfen5.com 满分网的值.
查看答案
已知A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},B⊆A,求m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.