甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.
(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;
(2)设经过两次考试后,能被该高校预录取的人数为ξ,求随机变量ξ的期望E(ξ).
考点分析:
相关试题推荐
已知函数
,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.
(1)当t=2时,求函数f(x)的单调递增区间;
(2)设|MN|=g(t),试求函数g(t)的表达式;
(3)在(2)的条件下,若对任意的正整数n,在区间
内,总存在m+1个数a
1,a
2,…,a
m,a
m+1,使得不等式g(a
1)+g(a
2)+…+g(a
m)<g(a
m+1)成立,求m的最大值.
查看答案
已知公差大于零的等差数列a
n的前n项和为S
n,且满足:a
3•a
4=117,a
2+a
5=22.
(1)求数列a
n的通项公式a
n;
(2)若数列b
n是等差数列,且
,求非零常数c;
(3)若(2)中的b
n的前n项和为T
n,求证:
.
查看答案
已知⊙O:x
2+y
2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.
查看答案
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直线梯形,∠ADC为直角,AD∥BC,AB⊥AC,AC=AB=2,G是△PAC的重心,E为PB中点,F在线段BC上,且CF=2FB.
(1)证明:FG∥平面PAB;
(2)证明:FG⊥AC;
(3)求二面角P-CD-A的一个三角函数值,使得FG⊥平面AEC
查看答案
某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.
(1)求该企业使用该设备x年的年平均污水处理费用y(万元);
(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?
查看答案