满分5 > 高中数学试题 >

甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试...

甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.
(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;
(2)设经过两次考试后,能被该高校预录取的人数为ξ,求随机变量ξ的期望E(ξ).
(1)甲、乙、丙三个同学中恰有一人通过笔试包括三种情况,这三种情况是互斥的,分别记甲、乙、丙三个同学笔试合格为事件A1、A2、A3,表示出满足条件的事件,由互斥事件的概率和相互独立事件同时发生的概率得到结果. (2)分别记甲、乙、丙三个同学经过两次考试后合格为事件A,B,C,由题意知变量ξ可能的取值是1、2、3,结合变量对应的事件写出分布列,做出期望. 【解析】 (1)甲、乙、丙三个同学中恰有一人通过笔试包括三种情况,这三种情况是互斥的, 分别记甲、乙、丙三个同学笔试合格为事件A1、A2、A3; E表示事件“恰有一人通过笔试” 由互斥事件的概率和相互独立事件同时发生的概率得到 =0.6×0.5×0.6+0.4×0.5×0.6+0.4×0.5×0.4=0.38. (2)分别记甲、乙、丙三个同学经过两次考试后合格为事件A,B,C, 则P(A)=P(B)=P(C)=0.3 由题意知变量ξ可能的取值是0,1、2、3, 结合变量对应的事件写出分布列, ∴P(ξ=0)=0.73=0.343 P(ξ=1)=3×(1-0.3)2×0.3=0.441, P(ξ=2)=3×0.32×0.7=0.189, P(ξ=3)=0.33=0.027. ∴E(ξ)=1×0.441+2×0.189+3×0.027=0.9.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.
(1)当t=2时,求函数f(x)的单调递增区间;
(2)设|MN|=g(t),试求函数g(t)的表达式;
(3)在(2)的条件下,若对任意的正整数n,在区间manfen5.com 满分网内,总存在m+1个数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.
查看答案
已知公差大于零的等差数列an的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列an的通项公式an
(2)若数列bn是等差数列,且manfen5.com 满分网,求非零常数c;
(3)若(2)中的bn的前n项和为Tn,求证:manfen5.com 满分网
查看答案
已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.
查看答案
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是直线梯形,∠ADC为直角,AD∥BC,AB⊥AC,AC=AB=2,G是△PAC的重心,E为PB中点,F在线段BC上,且CF=2FB.
(1)证明:FG∥平面PAB;
(2)证明:FG⊥AC;
(3)求二面角P-CD-A的一个三角函数值,使得FG⊥平面AEC

manfen5.com 满分网 查看答案
某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.
(1)求该企业使用该设备x年的年平均污水处理费用y(万元);
(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.