满分5 > 高中数学试题 >

在正三棱锥P-ABC中,底面正△ABC的中心为O,D是PA的中点,PO=AB=2...

在正三棱锥P-ABC中,底面正△ABC的中心为O,D是PA的中点,PO=AB=2,求PB与平面BDC所成角的正弦值.

manfen5.com 满分网
由题意,由于图形中已经出现了垂直于底面的高线,所以可以利用空间向量的方法求解直线与平面所成的夹角. 【解析】 以O为坐标原点,OA为x轴,OP为z轴建立空间直角坐标系.因△ABC是正三角形,故y轴平行于BC,而PO=AB=2,则 P(0,0,2),A(,0,0), B(-,1,0),C(-,-1,0), D是PA的中点,故D(,0,1) =(0,-2,0),=(,-1,1)(2分) 设=(x,y,z)是平面BDC的一个法向量,•=0且•=0, 即:,化简得:(5分) 取x=,则y=0,z=-2, 平面BDC的一个法向量是=(,0,-2),=(-,1,-2) cos<,>==(9分) 由于和所成的角与PB与平面BDC所成角互余,所以PB与平面BDC所成角的正弦值为.(10分)
复制答案
考点分析:
相关试题推荐
已知数列{an}满足manfen5.com 满分网
(Ⅰ)计算a2,a3,a4;(Ⅱ)猜想数列的通项an,并利用数学归纳法证明.
查看答案
甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.
(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;
(2)设经过两次考试后,能被该高校预录取的人数为ξ,求随机变量ξ的期望E(ξ).
查看答案
已知函数manfen5.com 满分网,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.
(1)当t=2时,求函数f(x)的单调递增区间;
(2)设|MN|=g(t),试求函数g(t)的表达式;
(3)在(2)的条件下,若对任意的正整数n,在区间manfen5.com 满分网内,总存在m+1个数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.
查看答案
已知公差大于零的等差数列an的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列an的通项公式an
(2)若数列bn是等差数列,且manfen5.com 满分网,求非零常数c;
(3)若(2)中的bn的前n项和为Tn,求证:manfen5.com 满分网
查看答案
已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.