(1)欲证AB⊥面VAD,根据直线与平面垂直的判定定理可知只需证AB与面VAD内两相交直线垂直,而VE⊥AB可由面VAD⊥底面ABCD得到,AB⊥AD,满足定理条件;
(2)设VD的中点为F,连AF,AF⊥VD,由三垂线定理知BF⊥VD,根据二面角平面角的定义可知∠AFB是面VAD与面VDB所成的二面角的平面角,在Rt△ABF中求出此角即可.
证明:(1)由于面VAD是正三角形,设AD的中点为E,
则VE⊥AD,而面VAD⊥底面ABCD,则VE⊥AB.
又面ABCD是正方形,则AB⊥AD,故AB⊥面VAD.
(2)由AB⊥面VAD,则点B在平面VAD内的射影是A,设VD的中点为F,连AF,BF由△VAD是正△,则AF⊥VD,由三垂线定理知BF⊥VD,故∠AFB是面VAD与面VDB所成的二面角的平面角.
设正方形ABCD的边长为a,
则在Rt△ABF中,AB=a,AF=a,tan∠AFB=
故面VAD与面VDB所成的二面角的大小为.