满分5 > 高中数学试题 >

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m...

已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0.
(Ⅰ)求m与n的关系表达式;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围.
(Ⅰ)求出f′(x),因为x=1是函数的极值点,所以得到f'(1)=0求出m与n的关系式; (Ⅱ)令f′(x)=0求出函数的极值点,讨论函数的增减性确定函数的单调区间; (Ⅲ)函数图象上任意一点的切线斜率恒大于3m即f′(x)>3m代入得到不等式即3m(x-1)[x-(1+)]>3m,又因为m<0,分x=1和x≠1,当x≠1时g(t)=t-,求出g(t)的最小值.要使<(x-1)-恒成立即要g(t)的最小值>,解出不等式的解集求出m的范围. 【解析】 (Ⅰ)f′(x)=3mx2-6(m+1)x+n. 因为x=1是f(x)的一个极值点,所以f'(1)=0,即3m-6(m+1)+n=0. 所以n=3m+6. (Ⅱ)由(Ⅰ)知f′(x)=3mx2-6(m+1)x+3m+6=3m(x-1)[x-(1+)] 当m<0时,有1>1+,当x变化时f(x)与f'(x)的变化如下表: 由上表知,当m<0时,f(x)在(-∞,1+)单调递减,在(1+,1)单调递增,在(1,+∞)单调递减. (Ⅲ)由已知,得f′(x)>3m,即3m(x-1)[x-(1+)]>3m, ∵m<0.∴(x-1)[x-1(1+)]<1.(*) 1x=1时.(*)式化为0<1怛成立. ∴m<0. 2x≠1时∵x∈[-1,1],∴-2≤x-1<0. (*)式化为<(x-1)-. 令t=x-1,则t∈[-2,0),记g(t)=t-, 则g(t)在区间[-2,0)是单调增函数.∴g(t)min=g(-2)=-2-=-. 由(*)式恒成立,必有<-⇒-<m,又m<0.∴-<m<0. 综上1、2知-<m<0.
复制答案
考点分析:
相关试题推荐
已知函数y=f(x)是定义在区间[-manfen5.com 满分网manfen5.com 满分网]上的偶函数,且x∈[0,manfen5.com 满分网]时,f(x)=-x2-x+5.
(1)求函数f(x)的解析式;
(2)若矩形ABCD的顶点A,B在函数y=f(x)的图象上,顶点C,D在x轴上,求矩形ABCD面积的最大值.
查看答案
当今世界进入了计算机时代,我们知道计算机装置有一个数据输入口A和一运算结果输出口B,某同学编入下列运算程序,将数据输入且满足以下性质:
①从A输入1时,从B得到manfen5.com 满分网
②从A输入整数n(n≥2)时,在B得到的结果f(n)是将前一结果f(n-1)先乘以奇数2n-3,再除以奇数2n+1.
(1)求f(2),f(3),f(4);
(2)试由(1)推测f(n)的表达式,并用数学归纳法证明;
(3)求manfen5.com 满分网
查看答案
设函数f(x)的定义域为R,对于任意实数x,y都有f(x+y)=f(x)+f(y),又当x>0时,f(x)<0且f(2)=-1.试问函数f(x)在区间[-6,6]上是否存在最大值与最小值?若存在,求出最大值、最小值;如果没有,请说明理由.
查看答案
设A={x|manfen5.com 满分网≥1},B={x|x2-2x+2m<0}.
(1)若A∩B={x|-1<x<4},求实数m的值;
(2)若B⊆A,求实数m的取值范围.
查看答案
如图,P1为边长为1的正三角形纸板,在P1的左下端剪去一个边长为manfen5.com 满分网的正三角形得到P2,然后依次剪去一个更小的正三角形(其边长为前一个被剪去的正三角形边长的一半)得到P3,P4,…,Pn,….记纸板Pn的面积记为Sn,则manfen5.com 满分网=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.