满分5 > 高中数学试题 >

已知f(x)是定义在[-1,1]上的奇函数. 当a,b∈[-1,1],且a+b≠...

已知f(x)是定义在[-1,1]上的奇函数. 当a,b∈[-1,1],且a+b≠0时,有manfen5.com 满分网成立.
(Ⅰ)判断函f(x)的单调性,并证明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数m的取值范围.
(Ⅰ)f(x)在[-1,1]上为增函数,利用函数的单调性定义,结合a+b≠0时,有成立,可证; (Ⅱ) 根据f(x)在[-1,1]上为增函数,对所有的x∈[-1,1],b∈[-1,1],有f(x)≤m2-2bm+1恒成立,应有m2-2bm+1≥f(1)=1⇒m2-2bm≥0.  记g(b)=-2mb+m2,对所有的b∈[-1,1],g(b)≥0成立,从而只需g(b)在[-1,1]上的最小值不小于零,故可解. 【解析】 (Ⅰ)f(x)在[-1,1]上为增函数 证明:设x1,x2∈[-1,1],且x1<x2,在中,令a=x1,b=-x2,有>0, ∵x1<x2,∴x1-x2<0,又∵f(x)是奇函数, ∴f(-x2)=-f(x2),∴>0 ∴f(x1)-f(x2)<0,即f(x1)<f(x2). 故f(x)在[-1,1]上为增函数…(6分) (Ⅱ)∵f(1)=1  且f(x )在[-1,1]上为增函数,对x∈[-1,1],有f(x)≤f(1)=1. 由题意,对所有的x∈[-1,1],b∈[-1,1],有f(x)≤m2-2bm+1恒成立, 应有m2-2bm+1≥1⇒m2-2bm≥0.  记g(b)=-2mb+m2,对所有的b∈[-1,1],g(b)≥0成立. 只需g(b)在[-1,1]上的最小值不小于零…(8分) 若m>0时,g(b)=-2mb+m2是减函数,故在[-1,1]上,b=1时有最小值, 且[g(b)]最小值=g(1)=-2m+m2≥0⇒m≥2; 若m=0时,g(b)=0,这时[g(b)]最小值=0满足题设,故m=0适合题意; 若m<0时,g(b)=-2mb+m2是增函数,故在[-1,1]上,b=-1时有最小值, 且[g(b)]最小值=g(-1)=2m+m2≥0⇒m≤-2. 综上可知,符合条件的m的取值范围是:m∈(-∞,-2]∪{0}∪[2,+∞).
复制答案
考点分析:
相关试题推荐
已知数列{an}的各项均为正数,它的前n项和Sn满足manfen5.com 满分网,并且a2,a4,a9成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=(-1)n+1anan+1,Tn为数列{bn}的前n项和,求T2n
查看答案
设a>0,求函数f(x)=manfen5.com 满分网-ln(x+a)(x∈(0,+∞))的单调区间.
查看答案
已知正数数列{an}为等比数列,若a1+a2=96,a3+a4=24,
(1)求a5+a6
(2)记Rn=a1•a2•a3…an,试求Rn取最大值时n的值.
查看答案
已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),manfen5.com 满分网
(1)若manfen5.com 满分网,求角α的值;
(2)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
已知数列{an}为等差数列,Sn为其前n项和,且a2=3,4S2=S4
(1)求数列{an}的通项公式;
(2)求证数列{2an}是等比数列;
(3)求使得Sn+2>2Sn的成立的n的集合.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.