满分5 > 高中数学试题 >

如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的...

如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1C⊥平面BDE.

manfen5.com 满分网
(1)取BC中点G,连接AG,EG,欲证直线DE∥平面ABC,只需证明DE平行平面ABC中的一条直线即可,由四边形ADEG为平行四边形,可知AG∥DE,AG⊂平面ABC,DE⊄平面ABC,问题得证. (2)取BC的中点G,判断三棱柱ABC-A1B1C1为直三棱柱,BB1⊥平面ABC,再证明B1C⊥BE,可证得:B1C⊥平面BDE. 证明:(1), ∵G,E分别为CB,CB1的中点, ∴EG∥BB1,且, 又∵正三棱柱ABC-A1B1C1, ∴EG∥AD,EG=AD ∴四边形ADEG为平行四边形. ∴AG∥DE ∵AG⊂平面ABC,DE⊄平面ABC, 所以  DE∥平面ABC. (2)由可得,取BC中点G ∵正三棱柱ABC-A1B1C1, ∴BB1⊥平面ABC. ∵AG⊂平面ABC, ∴AG⊥BB1, ∵G为BC的中点,AB=AC, ∴AG⊥BC∴AG⊥平面BB1C1C, ∵B1C⊂平面BB1C1C, ∴AG⊥B1C, ∵AG∥DE ∴DE⊥B1C, ∵BC=BB1,B1E=EC ∴B1C⊥BE, ∵BE⊂平面BDE,DE⊂平面BDEBE∩DE=E, ∴B1C⊥平面BDE.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,点manfen5.com 满分网在角α的终边上,点Q(sin2θ,-1)在角β的终边上,且manfen5.com 满分网
(1)求cos2θ;
(2)求sin(α+β)的值.
查看答案
已知函数manfen5.com 满分网定义域是[a,b](a,b∈Z),值域是[-1,0],则满足条件的整数对(a,b)有     对. 查看答案
已知命题:“在等差数(an)中,若4a2+a10+a( )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为    查看答案
设椭圆M:manfen5.com 满分网(a>b>0)右顶点和上顶点分别为A,B,直线AB与直线y=-x相交于点P,若点P在抛物线y2=-ax上,则椭圆M的离心率等于    查看答案
已知m,n是两条不同的直线,α,β为两个不同的平面,
有下列四个命题:
①若m⊥α,n⊥β,m⊥n,则α⊥β;
②若m∥α,n∥β,m⊥n,则α∥β;
③若m⊥α,n∥β,m⊥n,则α∥β;
④若m⊥α,n∥β,α∥β,则m⊥n.
其中正确的命题是(填上所有正确命题的序号)    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.