满分5 > 高中数学试题 >

设函数f(x)=|x2-4x-5|. (1)在区间[-2,6]上画出函数f(x)...

设函数f(x)=|x2-4x-5|.
(1)在区间[-2,6]上画出函数f(x)的图象;
(2)设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞).试判断集合A和B之间的关系(要写出判断过程);
(3)当k>2时,求证:在区间[-1,5]上,y=kx+3k的图象位于函数f(x)图象的上方.
(1)当x2-4x-5>0时,f(x)=x2-4x-5;当x2-4x-5<0时,f(x)=x2-4x-5,进而画出图象. (2)先求出f(x)≥5的解集,再判断集合A和B的关系. (3)设函数g(x)=kx+3k-f(x),只要证明g(x)>0恒成立即可. 【解析】 (1)设-2≤x≤6,当x2-4x-5≥0时, 即6≥x≥5或-1≥x≥-2时,f(x)=x2-4x-5=(x-2)2-9 当x2-4x-5<0时,即-1<x<5时,f(x)=-(x2-4x-5)=-(x-2)2+9 故作图如下. (2)方程f(x)=5的解分别是 和,由于f(x)在(-∞,-1]和[2,5]上单调递减, 在[-1,2]和[5,+∞)上单调递增, ∴. 由于2+<6,2->-2 ∴B⊂A. (3)当x∈[-1,5]时,f(x)=-x2+4x+5. g(x)=k(x+3)-(-x2+4x+5)=x2+(k-4)x+(3k-5)=, ∵k>2,∴.又-1≤x≤5, ①当,即2<k≤6时, 取,g(x)min=. ∵16≤(k-10)2<64, ∴(k-10)2-64<0,则g(x)min>0. ②当,即k>6时,取x=-1,g(x)min=2k>0. 由①、②可知,当k>2时,g(x)>0,x∈[-1,5]. 因此,在区间[-1,5]上,y=k(x+3)的图象位于函数f(x)图象的上方.
复制答案
考点分析:
相关试题推荐
经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为manfen5.com 满分网,后20天价格为g(t)=45(31≤t≤50,t∈N).
(1)写出该种商品的日销售额S与时间t的函数关系;
(2)求日销售额S的最大值.
查看答案
已知f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)判断方程f(x)=manfen5.com 满分网x+b的零点的个数.
查看答案
已知manfen5.com 满分网
(Ⅰ)求tanx的值;
(Ⅱ)求manfen5.com 满分网的值.
查看答案
已知集合A=manfen5.com 满分网
(1)当m=3时,求A∩(∁RB);
(2)若A∩B={x|-1<x<4},求实数m的值.
查看答案
已知函数f(x)=|x|-1,关于x的方程f2(x)-|f(x)|+k=0,给出下列四个命题:
①存在实数k,使得方程恰有2个不同的实根;
②存在实数k,使得方程恰有4个不同的实根;
③存在实数k,使得方程恰有5个不同的实根;
④存在实数k,使得方程恰有8个不同的实根.
其中真命题的序号为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.