满分5 > 高中数学试题 >

已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]...

已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )
A.f(-25)<f(11)<f(80)
B.f(80)<f(11)<f(-25)
C.f(11)<f(80)<f(-25)
D.f(-25)<f(80)<f(11)
由f(x)满足f(x-4)=-f(x)可变形为f(x-8)=f(x),得到函数是以8为周期的周期函数,则有f(-25)=f(-1),f(80)=f(0),f(11)=f(3),再由f(x)在R上是奇函数,f(0)=0,得到f(80)=f(0)=0,f(-25)=f(-1),再由f(x)在区间[0,2]上是增函数,以及奇函数的性质,推出函数在[-2,2]上的单调性,即可得到结论. 【解析】 ∵f(x)满足f(x-4)=-f(x), ∴f(x-8)=f(x), ∴函数是以8为周期的周期函数, 则f(-25)=f(-1),f(80)=f(0),f(11)=f(3), 又∵f(x)在R上是奇函数,f(0)=0, 得f(80)=f(0)=0,f(-25)=f(-1), 而由f(x-4)=-f(x) 得f(11)=f(3)=-f(-1)=f(1), 又∵f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数 ∴f(x)在区间[-2,2]上是增函数 ∴f(1)>f(0)>f(-1), 即f(-25)<f(80)<f(11), 故选D
复制答案
考点分析:
相关试题推荐
定义平面向量之间的一种运算“⊙”如下:对任意的manfen5.com 满分网,令manfen5.com 满分网,下面说法错误的是( )
A.若manfen5.com 满分网manfen5.com 满分网共线,则manfen5.com 满分网manfen5.com 满分网=0
B.manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网
C.对任意的λ∈R,有manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网
D.(manfen5.com 满分网manfen5.com 满分网)+2=|manfen5.com 满分网|2|manfen5.com 满分网|2
查看答案
(x+1)4的展开式中x2的系数为( )
A.4
B.6
C.10
D.20
查看答案
设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )
A.若l⊥m,m⊂α,则l⊥α
B.若l⊥α,l∥m,则m⊥α
C.若l∥α,m⊂α,则l∥m
D.若l∥α,m∥α,则l∥m
查看答案
圆柱形容器内部盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是    cm.
manfen5.com 满分网 查看答案
图中的三个直角三角形是一个体积为20cm3的几何体的三视图,则h=    cm.
manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.