满分5 > 高中数学试题 >

某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不...

某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数f(x)=x2+ξ•x为R上的偶函数”为事件A,求事件A的概率;
(2)求ξ的分布列和数学期望.
(1)由于学生是否选修哪门课互不影响,利用相互独立事件同时发生的概率解出学生选修甲、乙、丙的概率,由题意得到ξ=0时,表示该学生选修三门功课或三门功课都没选,根据互斥事件的概率公式得到结果. (2)用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积,所以变量的取值是0或2,结合第一问解出概率,写出分布列,算出期望. 【解析】 设该学生选修甲、乙、丙的概率分别为x、y、z 依题意得,解得 (1)若函数f(x)=x2+ξ•x为R上的偶函数,则ξ=0 当ξ=0时,表示该学生选修三门功课或三门功课都没选. ∴P(A)=P(ξ=0)=xyz+(1-x)(1-y)(1-z) =0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24 ∴事件A的概率为0.24 (2)依题意知ξ的取值为0和2由(1)所求可知 P(ξ=0)=0.24 P(ξ=2)=1-P(ξ=0)=0.76 则ξ的分布列为 ∴ξ的数学期望为Eξ=0×0.24+2×0.76=1.52
复制答案
考点分析:
相关试题推荐
盒子内装有10张卡片,分别写有1~10的10个整数,从盒子中任取1张卡片,记下它的读数x,然后放回盒子内,第二次再从盒子中任取1张卡片,记下它的读数y.试求:(1)x+y是10的倍数的概率.(2)xy是3的倍数的概率.
查看答案
甲、乙两艘轮船都要在某个泊位停靠6小时,假定他们在一昼夜的时间段中随机地到达,试求这两艘轮船中至少有一艘在停靠泊位时必须等待的概率.
查看答案
有4个不同的小球,4个不同的盒子,把小球全部放入盒内.
(1)恰有1个盒内有2个小球,有多少种不同放法?
(2)恰有两个盒内不放小球,有多少种不同放法?
查看答案
在(1+x)3+(1+x)4+…+(1+x)n+2的展开式中,含x2项的系数是多少?
查看答案
用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.