满分5 > 高中数学试题 >

函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x (Ⅰ)求函数g...

函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|.
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.
(Ⅰ)在函数y=f(x)的图象上任意一点Q(x,y),设关于原点的对称点为P(x,y),再由中点坐标公式,求得Q的坐标代入f(x)=x2+2x即可. (Ⅱ)将f(x)与g(x)的解析式代入转化为2x2-|x-1|≤0,再通过分类讨论去掉绝对值,转化为一元二次不等式求解. (Ⅲ)将f(x)与g(x)的解析式代入可得h(x)=-(1+λ)x2+2(1-λ)x+1,再用二次函数法研究其单调性. 【解析】 (Ⅰ)设函数y=f(x)的图象上任意一点Q(x,y)关于原点的对称点为P(x,y), 则即 ∵点Q(x,y)在函数y=f(x)的图象上 ∴-y=x2-2x,即y=-x2+2x,故g(x)=-x2+2x (Ⅱ)由g(x)≥f(x)-|x-1|,可得2x2-|x-1|≤0 当x≥1时,2x2-x+1≤0,此时不等式无解. 当x<1时,2x2+x-1≤0,解得. 因此,原不等式的解集为. (Ⅲ)h(x)=-(1+λ)x2+2(1-λ)x+1 ①当λ=-1时,h(x)=4x+1在[-1,1]上是增函数,∴λ=-1 ②当λ≠-1时,对称轴的方程为x=. ⅰ)当λ<-1时,,解得λ<-1. ⅱ)当λ>-1时,,解得-1<λ≤0.综上,λ≤0.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网,其中a≠0,讨论函数f(x)在定义域内的单调性.
查看答案
设函数f(x)=ax3+bx2+cx+d(a、b、c、d∈R)满足:∀x∈R都有f(x)+f(-x)=0,且x=1时,f(x)取极小值manfen5.com 满分网
(1)f(x)的解析式;
(2)当x∈[-1,1]时,证明:函数图象上任意两点处的切线不可能互相垂直:
(3)设F(x)=|xf(x)|,证明:manfen5.com 满分网时,manfen5.com 满分网
查看答案
已知集合manfen5.com 满分网,集合Q是函数f(x)=log2(ax2-2x+2)的定义域.
(1)若manfen5.com 满分网,求实数a的值;
(2)若P∩Q=∅,求实数a的取值范围.
查看答案
已知点P在曲线y=manfen5.com 满分网上,a为曲线在点P处的切线的倾斜角,则a的取值范围是    查看答案
已知f(x)定义在R上以2为周期的偶函数,当x∈[0,1]时,f(x)=x,若关于x的方程f(x)=kx+k+1(其中k常数)有4个不同的实数根,则k的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.