满分5 > 高中数学试题 >

已知直线l与函数f(x)=lnx的图象相切于点(1,0),且l与函数(m<0)的...

已知直线l与函数f(x)=lnx的图象相切于点(1,0),且l与函数manfen5.com 满分网(m<0)的图象也相切.
(Ⅰ)求直线l的方程及m的值;
(Ⅱ)设manfen5.com 满分网,若manfen5.com 满分网恒成立,求实数a的取值范围.
(Ⅰ)求出f′(x)得到斜率k=f′(1),且过(1,0),写出直线方程即可.因为直线l与g(x)的图象相切联立两个函数解析式,消去y得到一元二次方程,根的判别式=0即可求出m; (Ⅱ)把g(x)代入到h(x)得a大于一个函数,求出导函数=0时x的值,再根据自变量的取值范围讨论函数的增减性得到函数的最大值,让a大于最大值即可求出a的范围. 【解析】 (Ⅰ)∵,直线l是函数f(x)=lnx的图象在点(1,0)处的切线, ∴其斜率为k=f′(1)=1 ∴直线l的方程为y=x-1. 又因为直线l与g(x)的图象相切, 由, 得△=(m-1)2-9=0⇒m=-2(m=4不合题意,舍去) (Ⅱ)∵ 由恒成立, 得恒成立 设,则 当0<x<1时,ϕ′(x)>0;当x>1时,ϕ′(x)<0. 于是,ϕ(x)在(0,1)上单调递增,在(1,+∞)上单调递减. 故φ(x)的最大值为ϕmax(x)=ϕ(1)=1 要使a≥ϕ(x)恒成立,只需a≥1, ∴a的取值范围为[1,+∞)
复制答案
考点分析:
相关试题推荐
已知二次函数f(x)=x2-ax+a(a>0,x∈R)有且只有一个零点,数列{an}的前n项和Sn=f(n)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=2,D为AA1中点.
(Ⅰ)求证:CD⊥B1C1
(Ⅱ)求证:平面B1CD⊥平面B1C1D;
(Ⅲ)求三棱锥C1-B1CD的体积.

manfen5.com 满分网 查看答案
某社区举办2010年上海世博会知识宣传活动,进行现场抽奖.现有“世博会会徽”、“海宝”(世博会吉祥物)图案和普通卡片三种卡片共24张.
(1)若已知“世博会会徽”共3张,若从中任取出1张卡片,取到“海宝”的概率是manfen5.com 满分网.问普通卡片的张数是多少?
(2)现将1张“世博会会徽”、2张“海宝”、3张普通卡片放置抽奖盒中,抽奖规则是:抽奖者每次抽取两张卡片,若抽到两张“海宝”卡获一等奖,抽到“世博会会徽”获二等奖.求抽奖者获奖的概率.
查看答案
已知manfen5.com 满分网manfen5.com 满分网,其中ω>0,若函数manfen5.com 满分网,且函数f(x)的图象与直线y=2相邻两公共点间的距离为π.
(Ⅰ)求ω的值;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C、的对边,且manfen5.com 满分网,f(A)=1,求△ABC的面积.
查看答案
过双曲线manfen5.com 满分网=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.