满分5 > 高中数学试题 >

数列{an}满足 an=2an-1+2n+1(n∈N,n≥2),a3=27. (...

数列{an}满足 an=2an-1+2n+1(n∈N,n≥2),a3=27.
(Ⅰ)求a1,a2的值;
(Ⅱ)记manfen5.com 满分网,是否存在一个实数t,使数列{bn}为等差数列?若存在,求出实数t;若不存在,请说明理由;
(Ⅲ)求数列{an}的前n项和Sn
(Ⅰ)利用an=2an-1+2n+1(n∈N,n≥2),a3=27,代入可求;(Ⅱ)假设存在实数t,使得{bn}为等差数列,从而有2bn=bn-1+bn+1,.故可求;(Ⅲ)先求出数列的通项,再求和. 【解析】 (Ⅰ)由a3=27,27=2a2+23+1----------(1分)∴a2=9----------(2分) ∴9=2a1+22+1∴a1=2------------(3分) (Ⅱ)假设存在实数t,使得{bn}为等差数列. 则2bn=bn-1+bn+1------------(4分)∴ ∴4an=4an-1+an+1+t------------(5分)∴∴t=1------------(6分) 存在t=1,使得数列{bn}为等差数列.------------(7分) (Ⅲ)由(1)、(2)知:------------(8分) 又{bn}为等差数列.∴------------(9分) ∴Sn=3×2-1+5×21-1+7×22-1+…+(2n+1)×2n-1-1=3+5×2+7×22+…+(2n+1)×2n-1-n ∴2Sn=3×2+5×22+7×23+…+(2n+1)×2n-2n∴-Sn=3+2×2+2×22+2×23+…+2×2n-1-(2n+1)×2n+n----------(11分)= =(1-2n)×2n+n-1Sn=(2n-1)×2n-n+1------------(13分)
复制答案
考点分析:
相关试题推荐
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,已知|AB|=3米,|AD|=2米.
(1)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?
(2)当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
查看答案
下列命题:
①定义在R上的函数f(x)满足f(4)>f(3),则f(x)是R上的增函数;
②定义在R上的函数f(x)满足f(3)>f(4),则f(x)不是R上的增函数
③定义在R上的函数f(x)在(-∞,1]上是增函数,在[1,+∞)也是增函数,则f(x)是R上的增函数;
④定义在R上的函数f(x)在(-∞,1]是减函数,在(1,+∞)也是减函数,则f(x)是R上的减函数.
其中正确的命题是     .(填上所有正确命题的序号). 查看答案
若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17,记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,则f2008(8)=    查看答案
实系数方程x2+ax+2b=0的两根为x1,x2,且0≤x1<1<x2≤2,则manfen5.com 满分网的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.