满分5 > 高中数学试题 >

数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1) (1)...

数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1)
(1)求{an}的通项公式;
(2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn
(1)由题意可得:an=2Sn-1+1(n≥2),所以an+1-an=2an,即an+1=3an(n≥2),又因为a2=3a1,故{an}是等比数列,进而得到答案. (2)根据题意可得b2=5,故可设b1=5-d,b3=5+d,所以结合题意可得(5-d+1)(5+d+9)=(5+3)2,进而求出公差得到等差数列的前n项和为Tn. 【解析】 (1)因为an+1=2Sn+1,…① 所以an=2Sn-1+1(n≥2),…② 所以①②两式相减得an+1-an=2an,即an+1=3an(n≥2) 又因为a2=2S1+1=3, 所以a2=3a1, 故{an}是首项为1,公比为3的等比数列 ∴an=3n-1. (2)设{bn}的公差为d,由T3=15得,可得b1+b2+b3=15,可得b2=5, 故可设b1=5-d,b3=5+d, 又因为a1=1,a2=3,a3=9,并且a1+b1,a2+b2,a3+b3成等比数列, 所以可得(5-d+1)(5+d+9)=(5+3)2, 解得d1=2,d2=-10 ∵等差数列{bn}的各项为正, ∴d>0, ∴d=2, ∴
复制答案
考点分析:
相关试题推荐
设A={x|2x2+ax+2=0},B={x|x2+3x+2a=0};若A∪B={manfen5.com 满分网},求A∩B.
查看答案
已知等比数列{an}中,a2=2,a5=128.
(1)求通项an
(2)若bn=log2an,数列{bn}的前n项和为Sn,且Sn=360,求n的值.
查看答案
已知m>1,且存在x∈[-2,0],使不等式x2+2mx+m2-m≤0成立,则m的最大值为    查看答案
数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}的连续三项,若b1=1,则log2b2007=    查看答案
定义映射f:n→f(n)(n∈N+)如表:若f(n)=5051,则n=   
n1234n
f(n)24711f(n)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.