已知函数f(x)=ax
2+4x-2,若对任意x
1,x
2∈R且x
1≠x
2,都有
.
(Ⅰ)求实数a的取值范围;
(Ⅱ)(理)对于给定的非零实数a,求最小的负数M(a),使得x∈[M(a),0]时,-4≤f(x)≤4都成立;
(Ⅲ)(理)在(Ⅱ)的条件下,当a为何值时,M(a)最小,并求出M(a)的最小值.
(Ⅱ)(文)求最小的实数b,使得x∈[b,1]时,f(x)≥-2都成立;
(Ⅲ)(文)若存在实数a,使得x∈[b,1]时,-2≤f(x)≤3b都成立,求实数b的取值范围.
查看答案