满分5 > 高中数学试题 >

已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(-1,...

已知函数f(x)=x3+bx2+ax+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.
(Ⅰ)求解析式,只需把a,b,d三个字母求出即可.已知点P(0,2)满足f(x),得到d,又点M(-1,f(-1))处的切线方程为6x-y+7=0,可以得到f(-1)的值,并且得到f(x)在x=-1处的导数为6. (Ⅱ)利用导数研究函数的单调性即可求出函数的单调区间. 【解析】 (Ⅰ)∵f(x)的图象经过P(0,2),∴d=2, ∴f(x)=x3+bx2+ax+2,f'(x)=3x2+2bx+a. ∵点M(-1,f(-1))处的切线方程为6x-y+7=0 ∴f'(x)|x=-1=3x2+2bx+a|x=-1=3-2b+a=6①, 还可以得到,f(-1)=y=1,即点M(-1,1)满足f(x)方程,得到-1+b-a+2=1② 由①、②联立得b=a=-3 故所求的解析式是f(x)=x3-3x2-3x+2. (Ⅱ)f'(x)=3x2-6x-3.,令3x2-6x-3=0,即x2-2x-1=0. 解得.当; 当. 故f(x)的单调增区间为(-∞,1-),(1+,+∞);单调减区间为(1-,1+)
复制答案
考点分析:
相关试题推荐
形如45263这样的数成为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由2,3,4,5,6(其中6可以当9用)可构成数字不重复的五位“波浪数”个数为    查看答案
已知函数f(x)=f′(manfen5.com 满分网)cosx+sinx,则f(manfen5.com 满分网)的值为    查看答案
为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为    查看答案
当x∈[-1,2]时,x3-manfen5.com 满分网x2-2x<m恒成立,则实数m的取值范围是    查看答案
一口袋内装有5个黄球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次时停止,停止时取球的次数ξ是一个随机变量,则P(ξ=12)=    .(填算式) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.