满分5 > 高中数学试题 >

已知函数f(x)=(x3-6x2+3x+t)ex,t∈R. (1)若函数y=f(...

已知函数f(x)=(x3-6x2+3x+t)ex,t∈R.
(1)若函数y=f(x)依次在x=a,x=b,x=c(a<b<c)处取到极值.
①求t的取值范围;
②若a+c=2b2,求t的值.
(2)若存在实数t∈[0,2],使对任意的x∈[1,m],不等式f(x)≤x恒成立.求正整数m的最大值.
(1)①根据极值点是导函数的根,据方程的根是相应函数的零点,结合函数的单调性写出满足的不等式解出t的范围,②将三个极值点代入导函数得到方程,左右两边各项的对应系数相等,列出方程组,解出t值. (2)先将存在实数t∈[0,2],使不等式f(x)≤x恒成立转化为将t看成自变量,f(x)的最小值)≤x;再构造函数,通过导数求函数的单调性,求函数的最值,求出m的范围. 【解析】 (1)①f'(x)=(3x2-12x+3)ex+(x3-6x2+3x+t)ex=(x3-3x2-9x+t+3)ex ∵f(x)有3个极值点, ∴x3-3x2-9x+t+3=0有3个根a,b,c. 令g(x)=x3-3x2-9x+t+3,g'(x)=3x2-6x-9=3(x+1)(x-3), g(x)在(-∞,-1),(3,+∞)上递增,(-1,3)上递减. ∵g(x)有3个零点∴∴-8<t<24. ②∵a,b,c是f(x)的三个极值点, ∴x3-3x2-9x+t+3=(x-a)(x-b)(x-c)=x3-(a+b+c)x2+(ab+bc+ac)x-abc ∴ ∴b=1或-(舍∵b∈(-1,3)) ∴∴t=8 (2)不等式f(x)≤x,即(x3-6x2+3x+t)ex≤x,即t≤xe-x-x3+6x2-3x. 转化为存在实数t∈[0,2],使对任意的x∈[1,m], 不等式t≤xe-x-x3+6x2-3x恒成立. 即不等式0≤xe-x-x3+6x2-3x在x∈[1,m]上恒成立. 即不等式0≤e-x-x2+6x-3在x∈[1,m]上恒成立. 设φ(x)=e-x-x2+6x-3,则φ'(x)=-e-x-2x+6. 设r(x)=φ'(x)=-e-x-2x+6,则r'(x)=e-x-2,因为1≤x≤m,有r'(x)<0. 故r(x)在区间[1,m]上是减函数. 又r(1)=4-e-1>0,r(2)=2-e-2>0,r(3)=-e-3<0 故存在x∈(2,3),使得r(x)=φ'(x)=0. 当1≤x<x时,有φ'(x)>0,当x>x时,有φ'(x)<0. 从而y=φ(x)在区间[1,x]上递增,在区间[x,+∞)上递减. 又φ(1)=e-1+4>0,φ(2)=e-2+5>0,φ(3)=e-3+6>0,φ(4)=e-4+5>0,φ(5)=e-5+2>0,φ(6)=e-6-3<0. 所以当1≤x≤5时,恒有φ(x)>0; 当x≥6时,恒有φ(x)<0; 故使命题成立的正整数m的最大值为5.
复制答案
考点分析:
相关试题推荐
数列{an}满足a1=2,an+1=an2+6an+6(n∈N×
(Ⅰ)设Cn=log5(an+3),求证{Cn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设manfen5.com 满分网,数列{bn}的前n项的和为Tn,求证:manfen5.com 满分网
查看答案
已知数列{an}满足an+1+an=4n-3(n∈N*).
(1)若数列{an}是等差数列,求a1的值;
(2)当a1=2时,求数列{an}的前n项和Sn
查看答案
已知函数manfen5.com 满分网
(1)由函数manfen5.com 满分网的图象经过怎样的变换可以得到函数y=f(x)的图象?请作出y=f(x)的图象;
(2)若存在实数a,b(a<b),使得集合{y|y=f(x),a≤x≤b}=[ma,mb],求实数m的取值范围.
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且manfen5.com 满分网
(I)求manfen5.com 满分网的值;
(II)若manfen5.com 满分网的大小.
查看答案
已知f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=lnx-ax.若函数f(x)在其定义域上有且仅有四个不同的零点,则实数a的取值范围是______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.