满分5 > 高中数学试题 >

如图,五面体A-BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四...

如图,五面体A-BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四边形BCC1B1是矩形,二面角A-BC-C1为直二面角.
(Ⅰ)D在AC上运动,当D在何处时,有AB1∥平面BDC1,并且说明理由;
(Ⅱ)当AB1∥平面BDC1时,求二面角C-BC1-D余弦值.

manfen5.com 满分网
(I)由题意连接B1C交BC1于O,连接DO由于四边形BCC1B1是矩形且O为B1C中点又D为AC中点,从而DO∥AB1,在由线线平行,利用线面平行的判定定理即可; (II)由题意建立空间直角坐标系,先求出点B,A,C,D及点C1的坐标,利用先求平面的法向量,在由法向量的夹角与平面的夹角的关系求出二面角的余弦值的大小. 【解析】 (Ⅰ)当D为AC中点时,有AB1∥平面BDC1, 证明:连接B1C交BC1于O,连接DO∵四边形BCC1B1是矩形 ∴O为B1C中点又D为AC中点,从而DO∥AB, ∵AB1⊄平面BDC1,DO⊂平面BDC1∴AB1∥平面BDC1 (Ⅱ)建立空间直角坐标系B-xyz如图所示,则B(0,0,0),A(,1,0),C(0,2,0),D(,,0),C1(0,2,2), 所以=(,,0),=(0,2,2). 设=(x,y,z)为平面BDC1的法向量,则有,即 令Z=1,可得平面BDC1的一个法向量为=(3,-,1), 而平面BCC1的一个法向量为=(1,0,0), 所以cos<,>===,故二面角C-BC1-D的余弦值为.
复制答案
考点分析:
相关试题推荐
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率
(2)该顾客获得的奖品总价值ξ(元)的概率分布列和数学期望.
查看答案
设向量manfen5.com 满分网,向量manfen5.com 满分网,0≤α<π.
(1)若向量manfen5.com 满分网manfen5.com 满分网,求tanα的值;
(2)求manfen5.com 满分网的最大值及此时α的值.
查看答案
manfen5.com 满分网如图所示的三角形数阵中,满足:(1)第1行的数为1,(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加,则第n+1行中第2个数是    (用n表示). 查看答案
对a,b∈R,记max{a,b}=manfen5.com 满分网函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是    查看答案
已知a,b为正实数,且a+2b=1,则manfen5.com 满分网+manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.