满分5 > 高中数学试题 >

如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且,. (1)求椭圆...

manfen5.com 满分网如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且manfen5.com 满分网manfen5.com 满分网
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.
(1)设出椭圆的方程,根据题意可知c,进而根据求得a,进而利用a和c求得b,则椭圆的方程可得. (2)假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,设出P,Q的坐标,利用点M,F的坐标求得直线PQ的斜率,设出直线l的方程,与椭圆方程联立,由韦达定理表示出x1+x2和x1x2,进而利用求得m. 解.(1)如图建系,设椭圆方程为,则c=1 又∵即(a+c)•(a-c)=1=a2-c2,∴a2=2 故椭圆方程为 (2)假设存在直线l交椭圆于P,Q两点,且F恰为△PQM的垂心,则 设P(x1,y1),Q(x2,y2),∵M(0,1),F(1,0),故kPQ=1, 于是设直线l为y=x+m,由得3x2+4mx+2m2-2=0 ∵又yi=xi+m(i=1,2) 得x1(x2-1)+(x2+m)(x1+m-1)=0即2x1x2+(x1+x2)(m-1)+m2-m=0由韦达定理得 解得或m=1(舍)经检验符合条件
复制答案
考点分析:
相关试题推荐
如图,五面体A-BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四边形BCC1B1是矩形,二面角A-BC-C1为直二面角.
(Ⅰ)D在AC上运动,当D在何处时,有AB1∥平面BDC1,并且说明理由;
(Ⅱ)当AB1∥平面BDC1时,求二面角C-BC1-D余弦值.

manfen5.com 满分网 查看答案
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张券中任抽2张,求:
(1)该顾客中奖的概率
(2)该顾客获得的奖品总价值ξ(元)的概率分布列和数学期望.
查看答案
设向量manfen5.com 满分网,向量manfen5.com 满分网,0≤α<π.
(1)若向量manfen5.com 满分网manfen5.com 满分网,求tanα的值;
(2)求manfen5.com 满分网的最大值及此时α的值.
查看答案
manfen5.com 满分网如图所示的三角形数阵中,满足:(1)第1行的数为1,(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加,则第n+1行中第2个数是    (用n表示). 查看答案
对a,b∈R,记max{a,b}=manfen5.com 满分网函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.