本题考查的知识点是二面角及其度量,我们要根据二面角的定义,在两个平面的交线上取一点Q,然后向两个平面引垂线,构造出二面角的平面角,然后根据平面几何的性质,求出含二面角的平面角的三角形中相关的边长,解三角形即可得到答案.
【解析】
过AB上一点Q分别在α,β内做AB的垂线,交PM,PN于M点和N点
则∠MQN即为二面角α-AB-β的平面角,如下图所示:
设PQ=a,则∵∠BPM=∠BPN=45°
∴QM=QN=a
PM=PN=a
又由∠MPN=60°,易得△PMN为等边三角形
则MN=a
解三角形QMN易得∠MQN=90°
故答案为:90°