满分5 > 高中数学试题 >

设F1、F2分别是椭圆的左、右焦点. (Ⅰ)若P是该椭圆上的一个动点,求PF1•...

设F1、F2分别是椭圆manfen5.com 满分网的左、右焦点.
(Ⅰ)若P是该椭圆上的一个动点,求PF1•PF2的最大值和最小值;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(Ⅰ)根据题意,求出a,b,c的值,然后设P的坐标,根据PF1•PF2的表达式,按照一元二次函数求最值方法求解. (Ⅱ)设出直线方程,与已知椭圆联立方程组,运用设而不求韦达定理求出根的关系,求出k的取值范围. 【解析】 (Ⅰ)由题意易知 所以, 设P(x,y), 则= 因为x∈[-2,2], 故当x=0,即点P为椭圆短轴端点时, 有最小值-2 当x=±2,即点P为椭圆长轴端点时, 有最大值1 (Ⅱ)显然直线x=0不满足题设条件, 可设直线l:y=kx+2,A(x1,y1),B(x2,y2), 联立,消去y,整理得: ∴ 由得:或, 又 ∴ 又y1y2=(kx1+2)(kx2+2) =k2x1x2+2k(x1+x2)+4 == ∵, 即k2<4∴-2<k<2 故由①、②得: 或.
复制答案
考点分析:
相关试题推荐
在△ABC中,a,b,c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.
(I)求角B;
(II)若manfen5.com 满分网,求△ABC的面积.
查看答案
已知数列{an}的前n项和为Sn=n2+n.
(I)求数列{an}的通项公式;
(II)若manfen5.com 满分网,求数列{bn}的前n项和Tn
查看答案
已知命题p:“直线y=kx+1椭圆manfen5.com 满分网恒有公共点”命题q:只有一个实数x满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,求实数a的取值范围.
查看答案
已知函数manfen5.com 满分网,其中a,b∈R,若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x+1,求函数f(x)的解析式.
查看答案
设椭圆manfen5.com 满分网上一点P到左准线的距离为10,F是该椭圆的左焦点,若点M满足manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网),则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.