(1)通过已知的等式,利用an=Sn-Sn-1(n≥2),直接化简即可得到Sn2-Sn-12=常数,即可证明{Sn2}是等差数列;
(2)求出a1,利用(1)得到Sn,利用an=Sn-Sn-1(n≥2)得到表达式,然后通过放缩法证明an>an+1(n∈N*).
证明:(1)∵an2-2anSn+1=0,an=Sn-Sn-1(n≥2)
∴(Sn-Sn-1)2-2(Sn-Sn-1)Sn+1=0⇒Sn2-Sn-12=1
故{Sn2}成等差数列.
(2)∵a12-2a12+1=0,a1>0
∴a1=S1=1
∴Sn2=1+(n-1)=n
故
∴=(n∈N*)