(1)把已知的等式左边利用两角和与差的余弦函数公式及特殊角的三角函数值化简,得出cosα-sinα的关系式,把此关系式两边平方后,根据同角三角函数间的平方关系化简,求出sinαcosα的值;
(2)由(1)求出的sinαcosα的值大于0,且根据α的范围,得到α的具体范围,进而得到sinα+cosα小于0,利用完全平方公式化简(sinα+cosα)2,再根据同角三角函数间的平方关系化简后,把sinαcosα的值代入,开方求出sinα+cosα的值,再由cosα-sinα的值,代入cos2α化简后的式子中求出cos2α的值,将sinαcosα的值代入sin2α化简后的式子中求出sin2α的值,最后把所求式子利用两角和与差的正弦函数公式及特殊角的三角函数值化简后,把sin2α和cos2α的值代入即可求出值.
【解析】
(1)∵,
∴,…(2分)
两边平方得:(cosα-sinα)2=1-2sinαcosα=,
则;…(5分)
(2)∵,
∴,
又,
∴cosα+sinα=-,又,
∴,…(9分)
,…(10分)
则.…(12分)