满分5 > 高中数学试题 >

已知数列{an}的前n项和为Sn,且Sn=2an-2(n=1,2,3…),数列{...

已知数列{an}的前n项和为Sn,且Sn=2an-2(n=1,2,3…),数列{bn}中,b1=1,点P(bn,bn+1)在直线y=x+2上.
(1)求数列{an},{bn}的通项公式an和bn; 
(2)设cn=an•bn,求数列{cn}的前n项和Tn,并求满足Tn<167的最大正整数n.
(1)两式作差即可求数列{an}的相邻两项之间的关系,找到规律即可求出通项;对于数列{bn},直接利用点P(bn,bn+1)在直线y=x+2上,代入得数列{bn}是等差数列即可求通项; (2)先把所求结论代入求出数列{cn}的通项,再利用数列求和的错位相减法即可求出其各项的和,然后解不等式即可. 【解析】 Sn=2an-2,Sn-1=2an-1-2,又Sn-Sn-1=an,(n≥2,n∈N*) . ∴. ,∴ ∴an=2n ∵点P(bn,bn+1)在直线y=x+2上,∴bn+1=bn+2∴bn+1-bn=2,即数列{bn}是等差数列,又b1=1,∴bn=2n-1 (2)∵cn=(2n-1)2n,∴Tn=a1b1+a2b2+…+anbn=1×2+3×22+5×23+…+(2n-1)2n, ∴2Tn=1×22+3×23+…+(2n-3)2n+(2n-1)2n+1因此:-Tn=1×2+(2×22+2×23+…+2×2n)-(2n-1)2n+1 即:-Tn=1×2+(23+24+…+2n+1)-(2n-1)2n+1∴Tn=(2n-3)2n+1+6
复制答案
考点分析:
相关试题推荐
经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/时)与汽车的平均速度v(km/h)之间的函数关系为y=manfen5.com 满分网(v>0).
(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时)
(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?
查看答案
设{an}为等比数列,a1=1,a2=3.
(1)求最小的自然数n,使an≥2007;
(2)求和:manfen5.com 满分网
查看答案
第Ⅰ小题:已知函数f(x)=x+1,设g1(x)=f(x),gn(x)=f(gn-1(x))(n>1,n∈N*
(1)求g2(x),g3(x)的表达式,并猜想gn(x)(n∈N*)的表达式(直接写出猜想结果 )  
(2)若关于x的函数manfen5.com 满分网在区间manfen5.com 满分网上的最小值为6,求n的值.
第Ⅱ小题:设关于x的不等式lg(|x+3|+|x-7|)>a
(1)当a=1时,解这个不等式;(2)当a为何值时,这个不等式的解集为R.
查看答案
已知a>0,a≠1,设p:函数y=loga(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值范围.
查看答案
设集合A={(x,y)|y≥|x-2|,x≥0},B={(x,y)|y≤-x+b}
(1)A∩B=∅b的取值范围是   
(2)若A∩B≠∅,(x,y)∈A∩B,且x+2y的最大值为9,则b的值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.