满分5 >
高中数学试题 >
倾斜角为45°,在y轴上的截距为-1的直线方程是( ) A.y=x+1 B.y=...
倾斜角为45°,在y轴上的截距为-1的直线方程是( )
A.y=x+1
B.y=-x-1
C.y=-x+1
D.y=x-1
考点分析:
相关试题推荐
已知函数f(x)=λx
2+λx,g(x)=λx+lnx,h(x)=f(x)+g(x),其中λ∈R,且λ≠0.
(1)当λ=-1时,求函数g(x)的最大值;
(2)求函数h(x)的单调区间;
(3)设函数
若对任意给定的非零实数x,存在非零实数t(t≠x),使得φ′(x)=φ′(t)成立,求实数λ的取值范围.
查看答案
设数列{a
n}的通项是关于x的不等式x
2-x<(2n-1)x(n∈N′)的解集中整数的个数.
(1)求a
n并且证明{a
n}是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:
+
≥
;
(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.
查看答案
已知如图椭圆
=1(a>b>0)的离心率为
,椭圆的左、右两个顶点分别为A,B,AB=4,直线x=t(-2<t<2)与椭圆相交于M,N两点,经过三点A,M,N的圆与经过三点B,M,N的圆分别记为圆C1与圆C2.
(1)求椭圆的方程;
(2)求证:无论t如何变化,圆C1与圆C2的圆心距是定值;
(3)当t变化时,求圆C1与圆C2的面积的和S的最小值.
查看答案
设数列{b
n}满足:
,b
n+1=b
n2+b
n,
(1)求证:
;
(2)若T
n=
+
+…+
,对任意的正整数n,3T
n-log
2m-5>0恒成立.求m的取值范围.
查看答案
如图,直棱柱ABCD-A
1B
1C
1D
1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°AB=2AD=2CD=2.
(1)求证:AC⊥平面BB
1C
1C;
(2)在A
1B
1上是否存一点P,使得DP与平面BCB
1与平面ACB
1都平行?证明你的结论.
查看答案