满分5 > 高中数学试题 >

如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且P...

manfen5.com 满分网如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC,
(1)求证:BE∥平面PDA;
(2)若N为线段PB的中点,求证:EN⊥平面PDB;
(3)若manfen5.com 满分网,求平面PBE与平面ABCD所成的二面角的大小.
(1)由EC∥PD,根据线面平行的判定得:EC∥平面PDA,同时有BC∥平面PDA,再由面面平行的判定得平面BEC∥平面PDA,最后转化为线面平行. (2)因为以D出发的三条线两两垂直,所以可以建立如图空间直角坐标系,利用向量法只要证明,即可. (3)分别求得二个半平面的一个法向量即可,易知为平面PBE的法向量,为平面ABCD的法向量,分别求得其坐标,再用夹角公式求解即可. 【解析】 (1)证明:∵EC∥PD,PD⊂平面PDA,EC⊄平面PDA ∴EC∥平面PDA, 同理可得BC∥平面PDA(2分) ∵EC⊂平面EBC,BC⊂平面EBC且EC∩BC=C ∴平面BEC∥平面PDA(3分) 又∵BE⊂平面EBC ∴BE∥平面PDA(4分) (2)如图以点D为坐标原点,以AD所在的直线为x轴建立空间直角坐标系如图示: 设该简单组合体的底面边长为1,PD=a 则B(1,1,0),C(0,1,0),P(0,0,a),,(6分) ∴,, ∵, ∴EN⊥PB,EN⊥DB(8分) ∵PB、DB⊂面PDB,且PB∩DB=B ∴NE⊥面PDB(9分) (3)连接DN,由(2)知NE⊥面PDB∴DN⊥NE, ∵, ∴PD=DB∴DN⊥PB ∴为平面PBE的法向量,设AD=1,则 ∴=(11分) ∵为平面ABCD的法向量,,(12分) 设平面PBE与平面ABCD所成的二面角为θ, 则(13分) ∴θ=45°即平面PBE与平面ABCD所成的二面角为45°(4分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2-2x,g(x)=ax+2,其中a>0.
(Ⅰ)对∀x∈[-1,2],有f(x)<g(x)+2成立,求正数a的取值范围.
(Ⅱ)对∀x1∈[-1,2],∃x∈[-1,2],使g(x1)=f(x),求正数a的取值范围.
查看答案
在平面直角坐标系xoy中,以C(1,-2)为圆心的圆与直线manfen5.com 满分网相切.   (I)求圆C的方程;
(II)是否存在斜率为1的直线l,使得以l被圆C截得的弦AB为直径的圆过原点,若存在,求出此直线方程,若不存在,请说明理由.
查看答案
如图(1),△ABC是等腰直角三角形,AC=BC=4,E、F分别为AC、AB的中点,将△AEF沿EF折起,使A′在平面BCEF上的射影O恰为EC的中点,得到图(2).
(1)求证:EF⊥A′C;
(2)求三棱锥F-A′BC的体积.

manfen5.com 满分网 查看答案
已知双曲线x2-manfen5.com 满分网=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则manfen5.com 满分网manfen5.com 满分网最小值为     查看答案
在三棱柱ABC-A1B1C1中,各棱长相等,侧掕垂直于底面,点D是侧面BB1C1C的中心,则AD与平面BB1C1C所成角的大小是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.