满分5 > 高中数学试题 >

设全集为U,若命题P:2010∈A∩B,则命题¬P是( ) A.2010∈A∪B...

设全集为U,若命题P:2010∈A∩B,则命题¬P是( )
A.2010∈A∪B
B.2010∉A且2010∉B
C.2010∈({C_U}A)∩({C_U}B)
D.2010∈({C_U}A)∪({C_U}B)
根据交集的定义和命题的否定写出¬P,再结合选项进行判断. 【解析】 ∵命题P:2010∈A∩B,∴2010∈A且2010∈B, ∴命题¬P:2010∉A或2010∉B,∴A、B、C不对;D正确. 故选D.
复制答案
考点分析:
相关试题推荐
设数列{an}的前n项和为Sn,对一切n∈N*,点(n,Sn)在函数f(x)=x2+x的图象上.
(1)求an的表达式;
(2)设manfen5.com 满分网,使得不等式An<a对一切n∈N*都成立?若存在,求出a的取值范围;若不存在,请说明理由;
(3)将数列{an}依次按1项,2项循环地分为(a1),(a2,a3),(a4),(a5,a6),(a7),(a8,a9),(a10),
…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b100的值;
(4)如果将数列{an}依次按1项,2项,3项,4项循环;分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},提出同(3)类似的问题((3)应当作为特例),并进行研究,你能得到什么样的结论?
查看答案
国际上常用恩格尔系数(记作n)来衡量一个国家和地区人民生活水平的状况,它的计算公式为:manfen5.com 满分网,各种类型家庭的n如下表所示:
庭类型贫困温饱小康富裕最富裕
nn>60%50%<n≤60%40%<n≤50%30%<n≤40%n≤30%
根据某市城区家庭抽样调查统计,2003年初至2007年底期间,每户家庭消费支出总额每年平均增加720元,其中食品消费支出总额每年平均增加120元.
(1)若2002年底该市城区家庭刚达到小康,且该年每户家庭消费支出总额9600元,问2007年底能否达到富裕?请说明理由.
(2)若2007年比2002年的消费支出总额增加36%,其中食品消费支出总额增加12%,问从哪一年底起能达到富裕?请说明理由.
查看答案
如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
(1)求直线AE与平面CDE所成角的大小(用反三角函数值表示);
(2)求多面体ABCDE的体积.

manfen5.com 满分网 查看答案
杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14与第15个数的比为manfen5.com 满分网,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k(m,k∈N×)的数学公式表示上述结论,并给予证明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11阶杨辉三角

查看答案
设△ABC的内角∠A、∠B、∠C所对的边长分别为a、b、c,且a2+b2-c2=2absin2C,求角C的大小.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.