满分5 > 高中数学试题 >

已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于...

已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线manfen5.com 满分网的焦点,离心率等于manfen5.com 满分网
(1)求椭圆C的方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若manfen5.com 满分网manfen5.com 满分网,求证:λ12为定值.
(1)根据椭圆C的一个顶点恰好是抛物线的焦点,离心率等于.易求出a,b的值,得到椭圆C的方程. (2)设A、B、M点的坐标分别为A(x1,y1),B(x2,y2),设直线l的斜率为k,则直线l的方程是y=k(x-2),然后采用“联立方程”+“设而不求”+“韦达定理”,结合已知中,,求出λ1+λ2值,即可得到结论. 【解析】 (1)设椭圆C的方程为,则由题意知b=1.…(2分)∴.∴a2=5.…(4分) ∴椭圆C的方程为 .…(5分) (2)设A、B、M点的坐标分别为A(x1,y1),B(x2,y2),M(0,y). 又易知F点的坐标为(2,0).…(6分) 显然直线l存在的斜率,设直线l的斜率为k,则直线l的方程是y=k(x-2).…(7分) 将直线l的方程代入到椭圆C的方程中,消去y并整理得(1+5k2)x2-20k2x+20k2-5=0.…(8分)∴.…(9分) 又∵.(11分)∴.…(12分)
复制答案
考点分析:
相关试题推荐
设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=manfen5.com 满分网,求数列{cn}的前n项和Tn
查看答案
manfen5.com 满分网如图,四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点.若PA=AD=3,manfen5.com 满分网
(1)求证:AF∥平面PCE;
(2)求点F到平面PCE的距离;
(3)求直线FC平面PCE所成角的大小.
查看答案
设函数manfen5.com 满分网,其中向量manfen5.com 满分网=(m,cos2x),manfen5.com 满分网=(1+sin2x,1),x∈R,且y=f(x)的图象经过点manfen5.com 满分网
(Ⅰ)求实数m的值;
(Ⅱ)求函数f(x)的最小值及此时x值的集合.
查看答案
定义运算a*b为:manfen5.com 满分网,例如,1*2=1,则函数f(x)=sinx*cosx的值域为     查看答案
已知双曲线manfen5.com 满分网(a>0,b>0)的半焦距为c,若b2-4ac<0,则它的离心率的取值的范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.