(Ⅰ)根据x=2是f(x)的一个极值点,可知f′(2)=0,从而可求b的值,进而利用导数大于0,可求函数y=f(x)的单调递增区间;
(Ⅱ)根据直线y=2x和此函数的图象相切,故在切点处的斜率为2,从而可求切点,进而可求a的值;
(Ⅲ) 先确定函数在x=2处取最小值,进而利用最值法解决恒成立问题,故可解.
【解析】
(Ⅰ)f′(x)=x2-2bx+2.
∵x=2是f(x)的一个极值点
∴x=2是方程x2-2bx+2=0的一个根,解得.
令f′(x)>0,则x2-3x+2>0,解得x<1或x>2.
∴函数y=f(x)的单调递增区间为(-∞,1),(2,+∞).
(Ⅱ) 设切点为(x,y),则x2-3x+2=2
∴x=0或x=3
∴切点为(0,0),(3,6)
代入函数f(x)=,可得
(Ⅲ)∵当x∈(1,2)时,f′(x)<0,x∈(2,3)时,f′(x)>0,
∴f(x)在(1,2)上单调递减,f(x)在(2,3)上单调递增.
∴f(2)是f(x)在区间[1,3]上的最小值,且.
若当x∈[1,3]时,f(x)-恒成立,只需,
即,解得 0<a<1.