满分5 > 高中数学试题 >

已知函数f(x)=x2+(lga+2)x+lgb满足f(-1)=-2且对于任意x...

已知函数f(x)=x2+(lga+2)x+lgb满足f(-1)=-2且对于任意x∈R,恒有f(x)≥2x成立.
(1)求实数a,b的值;
(2)解不等式f(x)<x+5.
(1)由f(-1)=-2,代入函数解析式得到关于lga与lgb的等式记作①,化简后得到关于a与b的等式记作②,又因为f(x)≥2x恒成立,把f(x)的解析式代入后,令△≤0得到关于lga与lgb的不等式,把①代入后得到关于lgb的不等式,根据平方大于等于0,即可求出b的值,把b的值代入②即可求出a的值; (2)由(1)求出的a与b的值代入f(x)的解析式中即可确定出f(x)的解析式,然后把f(x)的解析式代入到f(x)<x+5中,得到关于x的一元二次不等式,求出一元二次不等式的解集即可. 解(1)由f(-1)=-2知,lgb-lga+1=0①,所以②. 又f(x)≥2x恒成立,f(x)-2x≥0恒成立, 则有x2+x•lga+lgb≥0恒成立, 故△=(lga)2-4lgb≤0, 将①式代入上式得:(lgb)2-2lgb+1≤0,即(lgb-1)2≤0, 故lgb=1即b=10,代入②得,a=100; (2)由(1)知f(x)=x2+4x+1,f(x)<x+5, 即x2+4x+1<x+5, 所以x2+3x-4<0, 解得-4<x<1, 因此不等式的解集为{x|-4<x<1}.
复制答案
考点分析:
相关试题推荐
记函数manfen5.com 满分网的定义域为A,g(x)=lg[(2x-a)(ax+1)]的定义域为B.
(1)求A;  
(2)若A⊆B,求实数a的取值范围.
查看答案
已知manfen5.com 满分网,设f1(x)=f(x),fn(x)=fn-1[fn-1(x)](n>1,n∈N*),则f3(x)的表达式为    ,猜想fn(x)(n∈N*)的表达式为    查看答案
若f(x)=sinωx(0<ω<1),在区间manfen5.com 满分网上的最大值为manfen5.com 满分网,则ω=    查看答案
明朝程大拉作数学诗:“远望巍巍塔七层,红光点点加倍增,共灯三百八十一”,请问尖头    盏灯. 查看答案
不等式manfen5.com 满分网的解集是空集,则实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.