本题考查的是不等式、函数性质以及恒成立有关的综合类问题.在解答时,应先分析好函数的单调性,然后结合条件f(ax+1)≤f(x-2)在[,1]上恒成立,将问题转化为有关 x的不等式在[,1]上恒成立的问题,在进行解答即可获得问题的解答.
【解析】
由题意可知:f(x)是偶函数,且f(x)在[0,+∞)上是增函数,
∴f(x)在(-∞,0]上是减函数,
∴由f(ax+1)≤f(x-2)在[,1]上恒成立,
可知:|ax+1|≤|x-2|在[,1]上恒成立,
∴在[,1]上恒成立,
∴-2≤a≤0.
故答案为:[-2,0].