满分5 > 高中数学试题 >

已知集合A{x|x<-1或x>1},B={log2x>0},则A∩B=( ) A...

已知集合A{x|x<-1或x>1},B={log2x>0},则A∩B=( )
A.{x|x>1}
B.{x|x>0}
C.{x|x<-1}
D.{x|x<-1或x>1}
由对数函数的性质,易得B={x|x>1},又有A={x|x<-1或x>1},结合交集的运算,可得答案. 【解析】 由对数函数的性质,易得B={x|x>1}, 又有A={x|x<-1或x>1}, 结合交集的运算,可得A∩B={x|x>1}, 故选A.
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网(m∈R,e是自然常数).
(1)求函数f(x)的极值;
(2)当x>0时,设f(x)的反函数为f-1(x),若0<p<q,试比较f(q-p),f-1(q-p)及f-1(q)-f-1(p)的大小.
查看答案
已知a是实数,函数manfen5.com 满分网
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)设g(a)为f(x)在区间[0,2]上的最小值.
(i)写出g(a)的表达式;
(ii)求a的取值范围,使得-6≤g(a)≤-2.
查看答案
已知定义在R上的函数f(x)=x2|x-a|(a∈R).
(1)判定f(x)的奇偶性,并说明理由;
(2)当a≠0时,是否存在一点M(t,0),使f(x)的图象关于点M对称,并说明理由.
查看答案
某射击测试规则为:每人最多射击3次,击中目标即终止射击,第i次击中目标得1~i(i=1,2,3)分,3次均未击中目标得0分.已知某射手每次击中目标的概率为0.8,其各次射击结果互不影响.
(Ⅰ)求该射手恰好射击两次的概率;
(Ⅱ)该射手的得分记为ξ,求随机变量ξ的分布列及数学期望.
查看答案
已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(Ⅰ)求f(x)的解析式;
(Ⅱ)解关于x的不等式manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.