已知椭圆
+
=1(a>b>0)的离心率为
,右焦点为F(1,0),直线l经过点F,且与椭圆交于A、B两点,O为坐标原点.
(I)求椭圆的标准方程;
(II)当直线l绕点F转动时,试问:在x轴上是否存在定点M,使得
为常数?若存在,求出定点M的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
已知函数f(x)=
mx
3-(2+
)x
2+4x+1,g(x)=mx+5
(Ⅰ)当m≥4时,求函数f(x)的单调递增区间;
(Ⅱ)是否存在m<0,使得对任意的x
1,x
2∈[2,3]都有f(x
1)-g(x
2)≤1?若存在,求m的取值范围;若不存在,请说明理由.
查看答案
数列{a
n}的前n项和S
n满足:S
n=2a
n-3n(n∈N
*).
(Ⅰ)求数列{a
n}的通项公式a
n;
(Ⅱ)令
,数列{b
n} 的前n项和为T
n,求证:
.
查看答案
如图,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求证;AE∥平面BFD;
(Ⅲ)求三棱锥C-BGF的体积.
查看答案
已知函数
(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;
(Ⅱ)求函数f(x)在区间
上的值域.
查看答案
已知x,y满足
,不等式x
2+9y
2≥axy恒成立,则a的取值范围为
.
查看答案