满分5 > 高中数学试题 >

设b、c表示两条直线,α,β表示两个平面,则下列命题是真命题的是( ) A.若b...

设b、c表示两条直线,α,β表示两个平面,则下列命题是真命题的是( )
A.若b⊂α,c∥α,则b∥c
B.若b⊂α,b∥c,则c∥α
C.若c∥α,α⊥β,则c⊥β
D.若c∥α,c⊥β,则α⊥β
由题设条件,对四个选项逐一判断即可,A选项用线线平行的条件进行判断;B选项用线面平行的条件判断;C选项用线面垂直的条件进行判断;D选项用面面垂直的条件进行判断, 【解析】 A选项不正确,因为线面平行,面中的线与此线的关系是平行或者异面; B选项不正确,因为与面中一线平行的直线与此面的关系可能是在面内或者与面平行; C选项不正确,因为两面垂直,与其中一面平行的直线与另一面的关系可能是平行,在面内也可能垂直; D选项正确,因为线与面平行,线垂直于另一面,可证得两面垂直. 故选D
复制答案
考点分析:
相关试题推荐
已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2=( )
A.-4
B.-6
C.-8
D.-10
查看答案
已知A={x|x2>4},B={x|log3x<1},则A∩B=( )
A.{x|x<-2}
B.{x|2<x<3}
C.{x|x>3}
D.{x|x<-2}∪{x|2<x<3}∪{x|2<x<3}
查看答案
设椭圆E:manfen5.com 满分网(a>b>0)过M(2,manfen5.com 满分网),N(manfen5.com 满分网,1)两点,O为坐标原点,
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使该圆的任意一条切线与椭圆E恒有两个交点A、B,且manfen5.com 满分网?若存在,写出该圆的方程,并求|AB|取值范围;若不存在,说明理由.
查看答案
设圆C1的方程为(x+2)2+(y-3m-2)2=4m2,直线l的方程为y=x+m+2.
(1)若m=1,求圆C1上的点到直线l距离的最小值;
(2)求C1关于l对称的圆C2的方程;
(3)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.
查看答案
已知△ABC的顶点A,B在椭圆x2+3y2=4上,C在直线l:y=x+2上,且AB∥l.
(Ⅰ)当AB边通过坐标原点O时,求AB的长及△ABC的面积;
(Ⅱ)当∠ABC=90°,且斜边AC的长最大时,求AB所在直线的方程.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.