满分5 > 高中数学试题 >

已知正项数列{an} 满足Sn+Sn-1=tan2+2(n≥2,t>0),a1=...

已知正项数列{an} 满足Sn+Sn-1=tan2+2(n≥2,t>0),a1=1,其中Sn是数{an} 的前n项和.
(1)求a2及通项an
(2)记数列{manfen5.com 满分网}的前n项和为Tn,若Tn<2对所有的n∈N+都成立,求证:0<t≤1.
(1)将n=2代入已知等式,求出a2,仿写另一个等式,两个式子相减得到数列的项的递推关系,利用等差数列的定义及等差数列的通项公式求得. (2)根据第(1)问题结论利用裂项的方法即可求的不等式左边当n≥2时的前n项和,进而问题转化为t2(1-)<2对于n≥2,n∈N*恒成立,再结合放缩法即可获得问题的解答. 【解析】 (1)a1=1,S2+S1=ta22+2得a2=0(舍去)或, 又Sn+Sn-1=tan2+2    (1) Sn-1+Sn-2=tan-12+2(n≥3)(2) (1)-(2)得an+an-1=t(an2-an-12)(n≥3), 因为数列{an}为正项数列,∴, 即数列{an}从第二项开始是公差为的等差数列.∴----7 分 (2)当n=时T1=t<2; n≥2时,Tn== 要使Tn<2对所有n∈N*恒成立,只≤2成立, 故0t≤1得证----(14分)
复制答案
考点分析:
相关试题推荐
如图,在直角△ABC中,∠C=90°,AB=2BC,E、F为线段AC、AB上的点,EF∥BC,将△AEF沿直线EF翻折成△A'EF,使平面A'EF⊥平面BCE,且T为A'B中点,FT∥平面△A'EC
(1)问E点在什么位置?并说明理由;
(2)求直线FC与平面A'BC所成角的正弦值.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=3acosB-ccosB.
(I)求cosB的值;
(II)若manfen5.com 满分网,且manfen5.com 满分网,求a和c的值.
查看答案
已知:manfen5.com 满分网.(a∈R,a为常数)
(1)若x∈R,求f(x)的最小正周期;
(2)若f(x)在[manfen5.com 满分网上的最大值与最小值之和为3,求a的值.
查看答案
设f(x)=manfen5.com 满分网,g(x)=asinmanfen5.com 满分网+5-2a(a>0),若对于任意x1∈[0,1],总存在x∈[0,1],使得g(x)=f(x1)成立,则a的取值范围是    查看答案
已知平面向量manfen5.com 满分网满足manfen5.com 满分网,且manfen5.com 满分网与  manfen5.com 满分网的夹角为120°,则manfen5.com 满分网(t∈R)的最小值是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.