满分5 > 高中数学试题 >

已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线...

已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|.
(1)求实数a,b间满足的等量关系;
(2)求线段PQ长的最小值;
(3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程.
(1)由勾股定理可得 PQ2=OP2-OQ2=PA2,即 (a2+b2)-1=(a-2)2+(b-1)2,化简可得a,b间满足的等量关系. (2)由于 PQ==,利用二次函数的性质求出它的最小值. (3)设⊙P 的半径为R,可得|R-1|≤PO≤R+1.利用二次函数的性质求得OP=的最小值为,此时,求得b=-2a+3=,R取得最小值为-1,从而得到圆的标准方程. 【解析】 (1)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得 PQ2=OP2-OQ2. 由已知PQ=PA,可得 PQ2=PA2,即 (a2+b2)-1=(a-2)2+(b-1)2. 花简可得 2a+b-3=0. (2)∵PQ====, 故当a=时,线段PQ取得最小值为. (3)若以P为圆心所作的⊙P 的半径为R,由于⊙O的半径为1,∴|R-1|≤PO≤R+1. 而OP===,故当a=时,PO取得最小值为, 此时,b=-2a+3=,R取得最小值为-1. 故半径最小时⊙P 的方程为 +=.
复制答案
考点分析:
相关试题推荐
某房地产开发商投资81万元建一座写字楼,第一年装修费为1万元,以后每年增加2万元,把写字楼出租,每年收入租金30万元.
(1)若扣除投资和装修费,则从第几年开始获取纯利润?
(2)若干年后开发商为了投资其他项目,有两种处理方案:
①纯利润总和最大时,以10万元出售;
②该楼年平均利润最大时以46万元出售该楼,问哪种方案更优?
查看答案
如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱manfen5.com 满分网
(I)证明FO∥平面CDE;
(II)设manfen5.com 满分网,证明EO⊥平面CDF.

manfen5.com 满分网 查看答案
manfen5.com 满分网设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.
(Ⅰ)求边长a;
(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.
查看答案
如图,它满足:(1)第n行首尾两数均为n;(2)图中的递推关系类似杨辉三角,则第n(n≥2)行的第2个数是   
manfen5.com 满分网 查看答案
manfen5.com 满分网如图,设平面α∩β=EF,AB⊥α,CD⊥α,垂足分别为B,D,若增加一个条件,就能推出BD⊥EF,现有:
①AC⊥β;
②AC与α,β所成的角相等;
③AC与CD在β内的射影在同一条直线上;
④AC∥EF,
那么上述几个条件中能成为增加的条件的序号是    (填上你认为正确的所有序号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.