满分5 > 高中数学试题 >

设有关于x的一元二次方程x2+2ax+b2=0. (1)将一颗质地均匀的正方体骰...

设有关于x的一元二次方程x2+2ax+b2=0.
(1)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为a,第二次出现的点数为b.求上述方程有实根的概率;
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
记事件A=“方程x2+2ax+b2=0有实根”.由△=(2a)2-4b2≥0,得:a2≥b2,当a≥0,b≥0时,方程x2+2ax+b2=0有实根⇔a≥b. (1)基本事件共6×6=36个,其中事件A包含21个基本事件,由此能求出方程有实根的概率. (2)全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},其面积为S=3×2=6,又构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b},其面积为,由此能求出方程有实根的概率. 【解析】 记事件A=“方程x2+2ax+b2=0有实根”. 由△=(2a)2-4b2≥0,得:a2≥b2 所以,当a≥0,b≥0时,方程x2+2ax+b2=0有实根⇔a≥b(2分) (1)基本事件共6×6=36个, 其中事件A包含21个基本事件: (1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1), (4,2),(4,3),(4,4)(5,1),(5,2),(5,3),(5,4), (5,5),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6) 所以(6分) (2)全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}, 其面积为S=3×2=6. 又构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}, 其面积为, 所以 (10分)
复制答案
考点分析:
相关试题推荐
如图所示,已知二次函数y=-x2+9,矩形ABOC的顶点A在第一象限内,且A在抛物线上,顶点B、C分别在y轴、x轴上,设点A的坐标为(x,y).
(1)试求矩形ABOC的面积S关于x的函数解析式S=S(x),并求出该函数的定义域;
(2)是否存在这样的矩形ABOC,使它的面积为6,并证明你的结论.

manfen5.com 满分网 查看答案
某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)若该校高一年级共有学生800人,估计成绩在65~85分之间的人数.

manfen5.com 满分网 查看答案
已知集合A={x|3≤x<6},B={y|y=2x,2≤x<3}.
(1)分别求A∩B,(CRB)∪A;
(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值范围.
查看答案
已知函数f(x)=loga(ax2-x+3)在[1,3]上是增函数,则a的取值范围是    查看答案
设[x]表示数x的整数部分(即小于等于x的最大整数),例如[3.15]=3,[0.7]=0,那么函数manfen5.com 满分网的值域为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.