(Ⅰ)由题设条件知an+1=an+1,所以an=n
(Ⅱ)由题设条件知Sn=1×2+2×21+3×22++(n-1)×2n-2+n×2n-1,2Sn=1×21+2×22+3×23++(n-1)×2n-1+n×2n,再用错位相减法求解.
【解析】
(Ⅰ)因为点()(n∈N*)在函数y=x2+1的图象上
所以an+1=an+1
根据等差数列的定义:{an}是首项为1,公差为1的等差数列
所以an=n
(Ⅱ)由已知bn=2n-1an=n2n-1
Sn=b1+b2+b3++bn-1+bn
=1×2+2×21+3×22++(n-1)×2n-2+n×2n-1①
2Sn=1×21+2×22+3×23++(n-1)×2n-1+n×2n②
①-②得-Sn=2+21+22++2n-2+2n-1-n×2n
=2n-1-n×2n(11分)Sn=(n-1)×2n+1