设函数f(x)=ax
3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f'(x)的最小值为-12.
(Ⅰ)求a,b,c的值;
(Ⅱ)求函数f(x)的单调递增区间,并求函数f(x)在[-1,3]上的最大值和最小值.
考点分析:
相关试题推荐
已知{a
n}是正数组成的数列,a
1=1,且点(
)(n∈N*)在函数y=x
2+1的图象上.
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)若数列{b
n}满足b
n=2
n-1a
n(n∈N*),求数列{b
n}的前n项和S
n.
查看答案
已知向量
.
(Ⅰ) 当
时,求
的值;
(Ⅱ)求函数
的最小正周期.
查看答案
已知一个四棱锥P-ABCD的三视图(正视图与侧视图为直角三角形,俯视图是带有一条对角形的正方形)如下,E是侧棱PC上的动点.
(1)求四棱锥P-ABCD的体积;
(2)是否不论点E在何位置都有BD⊥AE,证明你的结论.
查看答案
在上面式子中“祝”表示数字
.
查看答案
一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船是每小时航行
.
查看答案