满分5 > 高中数学试题 >

已知函数f(x)=x3-3ax(a∈R),函数g(x)=㏑x. (1)当a=1时...

已知函数f(x)=x3-3ax(a∈R),函数g(x)=㏑x.
(1)当a=1时,求函数f(x)在区间[-2,2]上的最小值;
(2)若在区间[1,2]上f(x)的图象恒在g(x)的图象的上方(没有公共点),求实数a的取值范围;
(3)当a>0时,设h(x)=|f(x)|,x∈[-1,1].求h(x)的最大值F(a)的解析式.
(1)求出函数的导数,再通过列表得出导数的正负与单调性的规律,得出函数在区间[-2,2]上的最小值为f(-2)和f(1)中的较小的函数值; (2)转化为不等式 在区间[1,2]上恒成立,变成求右边函数在区间[1,2]上的最小值问题,通过讨论导数的符号,得到3a≤1,从而求得a的取值范围; (3)首先发现函数h(x)为偶函数,故只需求h(x)在[0,1]上的最大值.然后根据参数a的取值范围,分别讨论函数h(x)在区间[0,1]上的单调性,从而得到函数h(x)在区间[0,1]上的最大值F(a)的解析式. 【解析】 (1)∵f'(x)=3x2-3=0,∴x=±1 ∵f(-2)=-2,f(2)=2,f(1)=-2 ∴函数的最小值为f(x)min=-2 (2)∵在区间[1,2]上f(x)的图象恒在g(x)图象的上方 ∴x3-3ax≥lnx在[1,2]上恒成立得 在[1,2]上恒成立 设h(x)=则 ∵2x3-1≥0,lnx≥0 ∴h'(x)≥0 ∴h(x)min=h(1)=1 ∴ (3)因g(x)=|f(x)|=|x3-3ax|在[-1,1]上是偶函数,故只要求在[0,1]上的最大值 ①当a≤0时,f′(x)≥0,f(x)在[0,1]上单调递增且f(0)=0,∴g(x)=f(x)F(a)=f(1)=1-3a. ②当a>0时,,(ⅰ)当 g(x)=|f(x)|=-f(x),-f(x)在[0,1]上单调递增,此时F(a)=-f(1)=3a-1 (ⅱ)当 时,,在 单调递增; 1°当 时,,; 2°当 (ⅰ)当 (ⅱ)当 (1)-2 ∴F(a)=
复制答案
考点分析:
相关试题推荐
如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成.两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为r1=13; 圆弧C2过点A(29,0).
(1)求圆弧C2所在圆的方程;
(2)曲线C上是否存在点P,满足PA=manfen5.com 满分网PO?若存在,指出有几个这样的点;若不存在,请说明理由;
(3)已知直线l:x-my-14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l的距离.

manfen5.com 满分网 查看答案
已知数列{an}各项均为正数,其前n项和为Sn,点(an,Sn)在曲线(x+1)2=4y上.
(1)求{an}的通项公式;
(2)设数列{bn}满足b1=3,令bn+1=abn,设数列{bn}的前n项和为Tn,求数列{Tn-6n}中最小项的值.
查看答案
某水产养殖场拟造一个无盖的长方体水产养殖网箱,,为避免混养,箱中要安装一些筛网,其平面图如下.如果网箱四周网衣(图中实线部分)建造单价为每米长56元,筛网(图中虚线部分)的建造价为每米长48元,网箱底面面积为160平方米,建造单价为每平方米50元.网衣及筛网的厚度不计.
(1)把建造网箱的总造价y(元)表示为网箱的长x(米)的函数,并求出最低造价;
(2)若要求网箱的长不超过15米,宽不超过12米,则当网箱的长和宽各为多少米时,可使总造价最低?(结果精确到0.01米)

manfen5.com 满分网 查看答案
如图,在直三棱柱ABC-A1B1C1中,已知∠ACB=90°,BC=CC1,E、F分别为AB、AA1的中点.
(1)求证:直线EF∥平面BC1A1
(2)求证:EF⊥B1C.

manfen5.com 满分网 查看答案
在△ABC中,角A,B,C所对边分别为a,b,c.
(1)若(a+b+c)(b+c-a)=3bc,求A的值;
(2)若c=10,A=45°,C=30°,求b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.