满分5 > 高中数学试题 >

对于函数f(x),若存在x∈R,使f(x)=x成立,则称x为f(x)的不动点.如...

对于函数f(x),若存在x∈R,使f(x)=x成立,则称x为f(x)的不动点.如果函数manfen5.com 满分网有且仅有两个不动点0和2,且manfen5.com 满分网
(1)求实数b,c的值;
(2)已知各项不为零的数列{an}的前n项之和为Sn,并且manfen5.com 满分网,求数列{an}的通项公式;
(3)求证:manfen5.com 满分网
(1)如果设 ,整理得:(1-b)x2+cx+a=0,由根与系数的关系得:,解得 ,代入f(x),并由f(-2)<,得c<3,且c,b∈N,f(x)=x有且只有两个不动点,得c、b的值,从而得f(x)解析式. (2)由题意,知 ,所以,2Sn=an-an2①;又an≠1,把n-1代替n得:2Sn-1=an-1-an-12,②; ①-②得:an,an-1的关系,从而得数列{an}是等差数列,通项公式为an=-n; (3)由an=-n,知,,先由数学归纳法证明,成立.所以,. 【解析】 (1)设 得:(1-b)x2+cx+a=0,由根与系数的关系,得:, 解得 ,代入解析式 ,由 , 得c<3,又c∈N,b∈N,若c=0,b=1,则f(x)=x不止有两个不动点,∴. (2)由题设,知 ,所以,2Sn=an-an2①; 且an≠1,以n-1代n得:2Sn-1=an-1-an-12,②; 由①-②得:2an=(an-an-1)-(an2-an-12),即(an+an-1)(an-an-1+1)=0, ∴an=-an-1或an-an-1=-1,以n=1代入①得:2a1=a1-a12, 解得a1=0(舍去)或a1=-1;由a1=-1,若an=-an-1得a2=1,这与an≠1矛盾, ∴an-an-1=-1,即{an}是以-1为首项,-1为公差的等差数列,∴an=-n; (3)由an=-n,知, , 当n=1时,=,,成立. 假设n=k时,成立, 则当n=k+1时,成立. 所以,.
复制答案
考点分析:
相关试题推荐
已知二次函数y=f(x)的图象与x轴相切于点(-1,0),其导函数y=f′(x)与直线y=2x平行.
(1)求y=f(x)的解析式;
(2)已知manfen5.com 满分网manfen5.com 满分网,试讨论方程kf′(x)-lnf(x)=0(k∈R)在区间(-1,+∞)上解得个数.
查看答案
manfen5.com 满分网如图,某园林单位准备绿化一块直径为BC的半圆形空地,△ABC的外面种草,△ABC的内接正方形PQRS为一水池,其余的地方种花,若BC=a,∠ABC=θ,设△ABC的面积为S1,正方形的面积为S2
(1)用a,θ表示S1和S2
(2)当a固定,θ变化时,求manfen5.com 满分网取最小值时的角.
查看答案
已知函数f(x)=(x2+ax-2a2+3a)ex(x∈R)其中a∈R.
(Ⅰ)若函数f(x)没有零点,求实数a的取值范围;
(Ⅱ)求函数f(x)的单调区间与极值.
查看答案
已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn
查看答案
若函数f(x)=sin2ax-sinaxcosax(a>0)的图象与直线y=m相切,并且切点的横坐标依次成公差为manfen5.com 满分网的等差数列.
(1)求m的值.
(2)若点A(x,y)是y=f(x)图象的对称中心,且x∈[0,manfen5.com 满分网],求点A的坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.